For proof of 3 divisibility, abc is a divisible by 3 if the sum of abc (a + b + c) is a multiple of 3.
<h3>
Integers divisible by 3</h3>
The proof for divisibility of 3 implies that an integer is divisible by 3 if the sum of the digits is a multiple of 3.
<h3>Proof for the divisibility</h3>
111 = 1 + 1 + 1 = 3 (the sum is multiple of 3 = 3 x 1) (111/3 = 37)
222 = 2 + 2 + 2 = 6 (the sum is multiple of 3 = 3 x 2) (222/3 = 74)
213 = 2 + 1 + 3 = 6 ( (the sum is multiple of 3 = 3 x 2) (213/3 = 71)
27 = 2 + 7 = 9 (the sum is multiple of 3 = 3 x 3) (27/3 = 9)
Thus, abc is a divisible by 3 if the sum of abc (a + b + c) is a multiple of 3.
Learn more about divisibility here: brainly.com/question/9462805
#SPJ1
Answer:
<em>Hello, I think the answer is -0.84 Hope That Helps!</em>
According to someone else on brainly it says he point which divides the line segment joining the points 8,-9 and 2,3 in the ratio 1:2 internally lies in the quadrant
One liter is 1,000 ml. plus 299 ml. is 1,299 ml. plus the additonal 398 ml. is 1,697 ml. which is 722 ml. less than the total volume. (722 ml. of water can still be added.)
<h3>Answer:</h3>
A) ∠A = ∠A' = 38° and ∠B = ∠B' = 42°
<h3>Explanation:</h3>
The sum of angles in ∆ABC is 180°, so ...
... (2x -2) + (2x +2) + (5x) = 180
... 9x = 180
... x = 20
and the angles of ∆ABC are ∠A = 38°, ∠B = 42°, ∠C = 100°.
___
The sum of angles of ∆A'B'C' is 180°, so ...
... (58 -x) +(3x -18) +(120 -x) = 180
... x +160 = 180
... x = 20
and ∠A' = 38°, ∠B' = 42°, ∠C' = 100°.
_____
The values of angle measures of ∆ABC match those of ∆A'B'C', so we can conclude ...
... A) ∠A = ∠A' = 38° and ∠B = ∠B' = 42°