1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Virty [35]
1 year ago
7

PLEASE I NEED HELP!

Mathematics
2 answers:
sergejj [24]1 year ago
8 0

Answer:

\pi (5\: \sf in)^2\left(\dfrac{30^{\circ}}{360^{\circ}}\right)

π(5in)² 30 over 360

Step-by-step explanation:

\textsf{Area of a sector of a circle}=\left(\dfrac{\theta}{360^{\circ}}\right) \pi r^2

(where \theta is the angle and r is the radius)

Given:

  • \theta = 30°
  • r = 5 in

Substituting these values into the equation:

\begin{aligned}\implies\textsf{Area} &=\left(\dfrac{30^{\circ}}{360^{\circ}}\right) \pi \cdot (5\: \sf in)^2\\\\ & = \pi (5\: \sf in)^2\left(\dfrac{30^{\circ}}{360^{\circ}}\right)\\\\ & = \pi \cdot 25\:(\sf in^2) \cdot \dfrac{1}{12}\\\\ & = \dfrac{25}{12} \pi \:(\sf in^2) \\\\ & = 6.54\: \sf in^2\:(nearest\:hundredth) \end{aligned}

zimovet [89]1 year ago
5 0

π(5in)² * 30 over 360 <u>can be used to determine sector area</u>.

\sf sector \ area  \ :  \dfrac{\theta}{360} *\pi *radius^2

# radius = 5 inches

# angle = 30 degrees

sector area:

\hookrightarrow \sf \dfrac{30}{360} *\pi *5^2

\hookrightarrow \sf \dfrac{1}{12} *\pi *25

\hookrightarrow \sf \dfrac{25}{12}\pi

\hookrightarrow \sf 6.54 \ inch^2

You might be interested in
Which net represents this triangular prism?
Anarel [89]

Answer:

this one.............

3 0
2 years ago
Read 2 more answers
Find the median for the following set of numbers: <br> 12, 15, 15, 16, 19, 21, 25
Hoochie [10]

The median is the number in the middle of the data set.

There are 7 numbers, so the 4th number is the median.

(Another method is to eliminate a number on each side until you get to the middle number)

<h2>Answer:</h2>

<u>The median is </u><u>16</u><u>.</u>

I hope this helps :)

7 0
2 years ago
Read 2 more answers
An exam is made of two papers that score differently.
Orlov [11]

71 %

Calculate score for each paper, total them and convert to a percentage.

Paper 1 : mark = 0.65 × 120 =78

Paper 2 :mark = 0.8 ×80 = 64

Total mark = (78 + 64)/200 =142/200

Percentage score = 142/200 × 100 % = 71 %


3 0
2 years ago
Read 2 more answers
Simplify the expression 4(-y+2) -3y
trapecia [35]

Answer:

−7y+8

Step-by-step explanation:

1. Simplify each term.

−4y+8−3y

2. Subtract 3y from −4y.

−7y+8

Hope this helps :D

3 0
2 years ago
The accompanying frequency distribution represents the square footage of a random sample of 500 houses that are owner occupied y
ioda

Answer:

\bar X = \frac{\sum x_i f_i}{n} = \frac{1220750}{500}=2441.5

s^2= \frac{3408029125 -\frac{(1220750)^2}{500}}{500-1} =856849.7

s= \sqrt{856849.7}=925.662

Step-by-step explanation:

For this case we can create the following table

Interval      Frequency (f)    Midpoint(xi)       xi *f      xi^2* f

0-499              9                       249.5            2245.5   560252.3

500-999         13                      749.5            9743.5    7302753

1000-1499      33                     1249.5          41233.5   51521258.25

1500-1999      115                    1749.5          201193.5  361986278.8

2000-2499     125                   2249.5         281187.5   632531281.3

2500-2999      81                    2749.5          222709.5 612339770.3

3000-3499      47                    3249.5         152726.5   496284761.8

3500-3999      45                    3749.5         168727.5    632643761.3

4000-4499      22                    4249.5         93489        397281505.5

4500-4999      10                     4749.5         47495        225577502.5

Total                500                                      1220750      3408029125

\sum f_i = 500 , \sum x_i f_i = 1220750, \sum x^2_i f_i = 3408029125

For this case we can calculate the sample mean with this formula:

\bar X = \frac{\sum x_i f_i}{n} = \frac{1220750}{500}=2441.5

And for the sample variance we can use the following formula:

s^2= \frac{\sum x^2_i f_i - \frac{(\sum x_i f_i)^2}{n}}{n-1}

And if we replace we got:

s^2= \frac{3408029125 -\frac{(1220750)^2}{500}}{500-1} =856849.7

And the deviation is just the square root of the sample variance and for this case is:

s= \sqrt{856849.7}=925.662

4 0
2 years ago
Other questions:
  • What is the value of 8 in 3.872
    13·2 answers
  • Which shows 52^2 - 48^2 being evaluated using the difference of perfect squares method?
    13·2 answers
  • Which direction does the graph of the equation shown below open? right, left, up, or down? x^2+6x-4y+5=0
    8·1 answer
  • Logically, How much would it cost to build a large seven bedroom home?
    10·1 answer
  • Confused can someone help
    6·2 answers
  • Sweaters cost $42 each .For every 5 sweaters You buy,You get 1 sweater free.How much will a total of sweaters cost ?
    13·1 answer
  • A group of 8 children and 10 adults ate going to a movie. Child tickets cost $2 and adults tickets cost $4. How much will the mo
    15·1 answer
  • What is the product of one half and two thirds?
    8·1 answer
  • A number n is greater than 22
    15·2 answers
  • The coordinates of a rectangle, LMNO, are L(- 1,3), M(2,3), N(2, - 5), and 0(- 1,- 5).
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!