Three complete orders on each side of the m=0 order can be produced in addition to the m = 0 order.
The ruling separation is
d=1 / (470mm −1) = 2.1×10⁻³ mm
Diffraction lines occur at angles θ such that dsinθ=mλ, where λ is the wavelength and m is an integer.
Notice that for a given order, the line associated with a long wavelength is produced at a greater angle than the line associated with a shorter wavelength.
We take λ to be the longest wavelength in the visible spectrum (538nm) and find the greatest integer value of m such that θ is less than 90°.
That is, find the greatest integer value of m for which mλ<d.
since d / λ = 538×10⁻⁹m / 2.1×10 −6 m ≈ 3
that value is m=3.
There are three complete orders on each side of the m=0 order.
The second and third orders overlap.
Learn more about diffraction here : brainly.com/question/16749356
#SPJ4
Answer:c c c c c c c c c c c c c c c c c c c c c c c c c c cc c c c c c c c c
cc
Explanation:
Answer:
<em>C-C</em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em>
<em>A</em><em> </em><em>carbon</em><em> </em><em>has</em><em> </em><em>4</em><em> </em><em> </em><em>valence</em><em> </em><em>ele</em><em>ctrons</em><em> </em><em>meaning </em><em>it</em><em> </em><em>can</em><em> </em><em>share</em><em> </em><em>4</em><em> </em><em>electrons</em><em> </em><em>and</em><em> </em><em>is</em><em> </em><em>in</em><em> </em><em>short</em><em> </em><em>of</em><em> </em><em>4</em><em> </em><em>electr</em><em>ons</em><em> </em><em>to</em><em> </em><em>fill</em><em> </em><em>it</em><em> </em><em>outer</em><em> </em><em>energy</em><em> </em><em>shell</em><em> </em><em>making </em><em>it</em><em> </em><em>8</em><em>.</em><em> </em><em>Which</em><em> </em><em>resul</em><em>ts</em><em> </em><em>to</em><em> </em><em>2</em><em> </em><em>double</em><em> </em><em>covalent</em><em> </em><em>bonds</em><em> </em><em>,</em><em>meaning</em><em> </em><em>there</em><em> </em><em>was </em><em>a</em><em> </em><em>sharing</em><em> </em><em>of</em><em> </em><em> </em><em>2</em><em>(</em><em>4</em><em>)</em><em> </em><em>=</em><em> </em><em>8</em><em> </em><em>elect</em><em>rons</em><em> </em><em>.</em><em> </em><em> </em><em>Hope</em><em> </em><em>this</em><em> </em><em>help</em><em>s</em><em> </em><em>.</em><em> </em><em> </em><em> </em><em>Your</em><em> </em><em>state</em><em>ment</em><em> </em><em>above</em><em> </em><em>is</em><em> </em><em>true </em><em>.</em>
1.31 × 10⁴ grams.
<h3>Explanation</h3>
Assume that oxygen acts like an ideal gas. In other words, assume that the oxygen here satisfies the ideal gas law:
,
where
the pressure on the gas,
;
the volume of the gas,
;
the number of moles of the gas, which needs to be found;
the absolute temperature of the gas,
.
the ideal gas constant,
if P, V, and T are in their corresponding SI units: Pa, m³, and K.
Apply the ideal gas law to find
:
.
In other words, there are 410.3 moles of O₂ molecules in that container.
There are two oxygen atoms in each O₂ molecules. The mass of mole of O₂ molecules will be
. The mass of 410.3 moles of O₂ will be:
.
What would be the mass of oxygen in the container if the pressure is approximately the same as STP at
or
instead?