Answer:
83.20 g of Na3PO4
Explanation:
1 mole of Na3PO4 contains 3 moles of Na+.
Mole of Na ion to be prepared = Molarity x volume
= 0.700 x 725/1000
= 0.5075 mole
If 1 mole of Na3PO4 contains 3 moles of Na ion, then 0.5075 Na ion will be contained in:
0.5075/3 x 1 = 0.1692 mole of Na3PO4
mole of Na3PO4 = mass/molar mass = 0.1692
Hence, mass of Na3PO4 = 0.1692 x molar mass
= 0.1692 x 163.94
= 83.20 g.
83.20 g of Na3PO4 will be needed.
Answer:
The answer to your question is below
Explanation:
A.
[H₃O⁺] = 2 x 10⁻¹⁴ M
pH = ?
Formula
pH = - log [H₃O⁺]
Substitution
pH = - log [2 x 10⁻¹⁴]
Result
pH = 13.7
B.
[H₃O⁺] = ?
pH = 3.12
Formula
pH = - log [H₃O⁺]
Substitution
3.12 = - log [H₃O⁺]
![10^{-3.12} = [H_{3} O^{+}]](https://tex.z-dn.net/?f=10%5E%7B-3.12%7D%20%3D%20%5BH_%7B3%7D%20O%5E%7B%2B%7D%5D)
Result
[H₃O⁺] = 7.59 M
Answer:
Explanation:
From the given information:
The equation for the reaction can be represented as:

The I.C.E table can be represented as:
2SO₂ O₂ 2SO₃
Initial: 14 2.6 0
Change: -2x -x +2x
Equilibrium: 14 - 2x 2.6 - x 2x
However, Since the amount of sulfur trioxide gas to be 1.6 mol.
SO₃ = 2x,
then x = 1.6/2
x = 0.8 mol
For 2SO₂; we have 14 - 2x
= 14 - 2(0.8)
= 14 - 1.6
= 12.4 mol
For O₂; we have 2.6 - x
= 2.6 - 1.6
= 1.0 mol
Thus;
[SO₂] = moles / volume = ( 12.4/50) = 0.248 M ,
[O₂] = 1/50 = 0.02 M ,
[SO₃] = 1.6/50 = 0.032 M
Kc = [SO₃]² / [SO₂]² [O₂]
= ( 0.032²) / ( 0.248² x 0.02)
= 0.8325
Recall that; the equilibrium constant for the reaction
= 0.8325;
If we want to find:

Then:


Since no temperature is given to use in the question, it will be impossible to find the final temperature of the mixture.
Answer:

Explanation:
Firstly, write the expression for the equilibrium constant of this reaction:
![K_{eq} = \frac{[ADP][Pi]}{ATP}](https://tex.z-dn.net/?f=K_%7Beq%7D%20%3D%20%5Cfrac%7B%5BADP%5D%5BPi%5D%7D%7BATP%7D)
Secondly, we may relate the change in Gibbs free energy to the equilibrium constant using the equation below:

From here, rearrange the equation to solve for K:

Now we know from the initial equation that:
![K_{eq} = \frac{[ADP][Pi]}{ATP}](https://tex.z-dn.net/?f=K_%7Beq%7D%20%3D%20%5Cfrac%7B%5BADP%5D%5BPi%5D%7D%7BATP%7D)
Let's express the ratio of ADP to ATP:
![\frac{[ADP]}{[ATP]} = \frac{[Pi]}{K_{eq}}](https://tex.z-dn.net/?f=%5Cfrac%7B%5BADP%5D%7D%7B%5BATP%5D%7D%20%3D%20%5Cfrac%7B%5BPi%5D%7D%7BK_%7Beq%7D%7D)
Substitute the expression for K:
![\frac{[ADP]}{[ATP]} = \frac{[Pi]}{K_{eq}} = \frac{[Pi]}{e^{-\frac{\Delta G^o}{RT}}}](https://tex.z-dn.net/?f=%5Cfrac%7B%5BADP%5D%7D%7B%5BATP%5D%7D%20%3D%20%5Cfrac%7B%5BPi%5D%7D%7BK_%7Beq%7D%7D%20%3D%20%5Cfrac%7B%5BPi%5D%7D%7Be%5E%7B-%5Cfrac%7B%5CDelta%20G%5Eo%7D%7BRT%7D%7D%7D)
Now we may use the values given to solve:
![\frac{[ADP]}{[ATP]} = \frac{[Pi]}{K_{eq}} = \frac{[Pi]}{e^{-\frac{\Delta G^o}{RT}}} = [Pi]e^{\frac{\Delta G^o}{RT}} = 1.0 M\cdot e^{\frac{-30 kJ/mol}{2.5 kJ/mol}} = 6.14\cdot 10^{-6}](https://tex.z-dn.net/?f=%5Cfrac%7B%5BADP%5D%7D%7B%5BATP%5D%7D%20%3D%20%5Cfrac%7B%5BPi%5D%7D%7BK_%7Beq%7D%7D%20%3D%20%5Cfrac%7B%5BPi%5D%7D%7Be%5E%7B-%5Cfrac%7B%5CDelta%20G%5Eo%7D%7BRT%7D%7D%7D%20%3D%20%5BPi%5De%5E%7B%5Cfrac%7B%5CDelta%20G%5Eo%7D%7BRT%7D%7D%20%3D%201.0%20M%5Ccdot%20e%5E%7B%5Cfrac%7B-30%20kJ%2Fmol%7D%7B2.5%20kJ%2Fmol%7D%7D%20%3D%206.14%5Ccdot%2010%5E%7B-6%7D)