Cycling of nutrients and flow of energy
Answer:
- Can leverage Next Generation Sequencing technology to identify and characterize organisms
- Has resources to support analysis at the DOE-JGI site.
- Can identify microbiologic organisms without traditional isolation and culturing of individual organisms.
Explanation:
Metagenomics can be defined as the study of whole genomes of biological communities recovered from environmental samples. This genomic field has enabled the discovery of new species (microorganisms) and their effects on the environment. Next-Generation Sequencing (NGS) technologies allow to obtain huge amounts of genomic data, which has been a limitation in genomics and metagenomics. Metagenomic NGS (mNGS) is a technique used for sequencing nucleic acids present in a biological sample containing mixed populations of microorganisms. Finally, the Department of Energy Joint Genome Institute (DOE JGI) is a referent in metagenomic analysis, especially in genome assembly data obtained from microbial communities. This Science User Facility has developed a series of bioinformatics tools and databases in order to analyze metagenomic information.
Answer:
Main sequence stars fuse hydrogen atoms to form helium atoms in their cores. About 90 percent of the stars in the universe, including the sun, are main sequence stars. These stars can range from about a tenth of the mass of the sun to up to 200 times as massive.
Stars start their lives as clouds of dust and gas. Gravity draws these clouds together. A small protostar forms, powered by the collapsing material. Protostars often form in densely packed clouds of gas and can be challenging to detect.
"Nature doesn't form stars in isolation," Mark Morris, of the University of California at Los Angeles (UCLS), said in a statement. "It forms them in clusters, out of natal clouds that collapse under their own gravity."
Smaller bodies — with less than 0.08 the sun's mass — cannot reach the stage of nuclear fusion at their core. Instead, they become brown dwarfs, stars that never ignite. But if the body has sufficient mass, the collapsing gas and dust burns hotter, eventually reaching temperatures sufficient to fuse hydrogen into helium. The star turns on and becomes a main sequence star, powered by hydrogen fusion. Fusion produces an outward pressure that balances with the inward pressure caused by gravity, stabilizing the star.
How long a main sequence star lives depends on how massive it is. A higher-mass star may have more material, but it burns through it faster due to higher core temperatures caused by greater gravitational forces. While the sun will spend about 10 billion years on the main sequence, a star 10 times as massive will stick around for only 20 million years. A red dwarf, which is half as massive as the sun, can last 80 to 100 billion years, which is far longer than the universe's age of 13.8 billion years. (This long lifetime is one reason red dwarfs are considered to be good sources for planets hosting life, because they are stable for such a long time.)
Explanation:
I hope this helped!
Answer;
- DNA
-Some additional proof of the endosymbiotic theory includes the similarity in DNA between bacteria and mitochondria and cyanobacteria and chloroplasts.
Explanation;
-According to the endosymbiotic theory; mitochondria and chloroplasts contain their own circular DNA, similar to DNA in Bacteria, Both mitochondria and chloroplasts are surrounded by two membranes: inner and outer membrane, mitochondria are about the same size as bacteria and also mitochondria appear to have been derived from purple bacteria and chloroplasts derived from photosynthetic bacteria.