<u>Answer:</u> Group 1 ions are known as cations and Group 17 ions are known as anions.
<u>Explanation:</u>
Ions are formed when an atom looses or gains electrons.
If an atom gains electrons, it leads to the formation of negative ions known as anions. <u>For Example:</u> Fluorine is a Group 17 element which gains 1 electron to form
ions.
If an atom looses electrons, it leads to the formation of positive ions known as cations. <u>For Example:</u> Sodium is a Group 1 element which looses 1 electron to form
ions.
Hence, group 1 ions are known as cations and Group 17 ions are known as anions.
Answer:
continental polar air masses
Explanation:
forms over Canada, move down from North Pole, bring bitterly cold and dry air to the northern United States during the winter.
The atoms that would be expected to be diamagnetic in the ground state is magnesium
The magnetism of an atom refers to its electronic configuration. A diamagnetic atom is an atom whose electrons are all paired.
A paired electron is an electron that occurs in pairs in its orbital shell.
At their respective ground state, the electronic configuration of the given elements are as follows:
The electronic configuration of magnesium is 1s²2s²2p⁶3s². As such its a diamagnetic atom.
The electronic configuration of Potassium is 1s²2s²2p⁶3s²3p⁶4s¹. Hence, Potassium has one unpaired electron in its outermost shell.
The electronic configuration of Chlorine is 1s²2s²2p⁶3s²3p⁵. Hence, Chlorine has one unpaired electron in its outermost shell.
The electronic configuration of Cobalt is 1s²2s²2p⁶3s²3p⁶3d⁷4s². Hence, the unpaired electrons of Cobalt in its outermost shell are three.
Therefore, the atoms that are diamagnetic in the ground state is magnesium.
Learn more about diamagnetic atoms here:
brainly.com/question/18865305?referrer=searchResults
<span>Well, during the day, the water, as well as the surfaces surrounding the water, are heated by various thermodynamic processes: conduction, convection, radiation, etc. This in turn warms the water molecules in the lakes, streams, rivers, and oceans, thereby transferring heat (their kinetic energy) to the water molecules, which in turn receive that energy from the surrounding surfaces, or directly via radiation/insolation from the sun. When the water molecules attain enough energy, some of them attain enough energy to escape the surface of the liquid and enter the gas phase. Hence, as water is heated, more and more water molecules attain enough kinetic energy to enter the gas phase.</span>