Answer:
The partial pressure of argon in the jar is 0.944 kilopascal.
Explanation:
Step 1: Data given
Volume of the jar of air = 25.0 L
Number of moles argon = 0.0104 moles
Temperature = 273 K
Step 2: Calculate the pressure of argon with the ideal gas law
p*V = nRT
p = (nRT)/V
⇒ with n = the number of moles of argon = 0.0104 moles
⇒ with R = the gas constant = 0.0821 L*atm/mol*K
⇒ with T = the temperature = 273 K
⇒ with V = the volume of the jar = 25.0 L
p = (0.0104 * 0.0821 * 273)/25.0
p = 0.00932 atm
1 atm =101.3 kPa
0.00932 atm = 101.3 * 0.00932 = 0.944 kPa
The partial pressure of argon in the jar is 0.944 kilopascal.
The given question is incomplete. The complete question is:
The change in entropy is related to the change in the number of moles of gas molecules. Determine the change in moles of gas for each of the reactions and decide if the entropy increases decreases or has little to no change:
A. 
B. 
C. 
D.
Answer: A.
: decreases
B.
: decreases
C.
: no change
D.
: increases
Explanation:
Entropy is defined as the randomness of the system.
Entropy is said to increase when the randomness of the system increase, is said to decrease when the randomness of the system decrease and is said to have no change when the randomness remains same.
In reaction
, as gaseous reactant is changed to solid product, entropy decreases.
In reaction
, as 4 moles of gaseous reactants is changed to 2 moles of gaseous product, entropy decreases.
In reaction
, as 3 moles of gaseous reactants is changed to 3 moles of gaseous product, entropy has no change.
In reaction
, as 1 mole of gaseous reactant is changed to 3 moles of gaseous product, entropy increases.
Density depends on both the mass and the volume of an object. If you cut a bar of gold in half, you would have two bars with half the mass of the original bar. However, each bar would also have half the volume of the original bar. The density of gold does not change.
Well for a start, this makes absolutely no sense, "discovered a fuel that burns so hot that it becomes cold."
<span>And yes, it's not science if the experiment can't be repeated. In fact they should WANT it to be repeated so that you can get credit for discovering something new and then possibly harness this effect to produce useful applications. </span>
<span>For all we know they had a fewer of LN2 in the lab that got shredded by the blast, LN2 could certainly have frozen many things (not metal though, since metal is already solid at room temperature, (except for mercury)), and afterwards would leave no trace.</span>