Correct Answer: Cation -A
Given that both the cations, cation-A and cation -B have the same concentrations.
Charge on cation-A is +3, while charge on cation- B is +1. Cations with higher charge can easily substitute those present on the clay minerals. Cations with higher charge have a greater affinity for the negatively charged sites present on the clay mineral. So, cation -A with a charge of +3 is more likely to occupy the anionic sites on the clay mineral.
Magnesium(Mg) does not forms diatomic molecules.
The name of the compound CuCl2 is copper(ll)chloride.
Hope this helps you.
Answer:
48 g/mol
Explanation:
Step 1: Calculate the mass of the gas (m)
According to the law of conservation of mass, the mass of the solid before the decomposition must be equal to the sum of the masses of the solid residue and the gas
mSolid = mResidue + mGas
mGas = mSolid - mResidue = 4.73 g - 4.10 g = 0.63 g
Step 2: Convert 320 cm³ to L
We will use the conversion factor 1 L = 1000 cm³.
320 cm³ × 1 L/1000 cm³ = 0.320 L
Step 3: Calculate the moles of gas (n)
The gas is at room temperature (298.15 K) and room pressure (1 atm). We can calculate the moles of gas using the ideal gas equation.
P × V = n × R × T
n = P × V/R × T
n = 1 atm × 0.320 L/(0.0821 atm.L/mol.K) × 298.15 K = 0.0131 mol
Step 4: Calculate the molecular mass of the gas (M)
We will use the following expression.
M = m/n = 0.63 g/0.0131 mol = 48 g/mol
Answer:
1.5×10⁷ Hz
Explanation:
From the question given above, the following data were obtained:
Wavelength of radio wave (λ) = 20 m
Frequency (f) =?
Frequency and wavelength of a wave are related by the following equation:
v = λf
Where:
'v' is the velocity of electromagnetic wave.
'λ' is the wavelength
'f' is the frequency.
With the above formula, we can obtain the frequency of the radio wave as illustrated below:
Wavelength of radio wave (λ) = 20 m
Velocity (v) = 3×10⁸ m/s
Frequency (f) =?
v = λf
3×10⁸ = 20 × f
Divide both side by 20
f = 3×10⁸ / 20
f = 1.5×10⁷ Hz
Thus the frequency of the radio wave is 1.5×10⁷ Hz