Complete question is;. A 73mH solenoid inductor is wound on a form that is 0.80m long and 0.10m in diameter a coil having a resistance of 7.7 ohms is tightly wound around the solenoid at its center the mutual inductance of the coil and solenoid is 19μH at a given instant the current in the solenoid is 820mA and is decreasing at the rate of 2.5A/s at the given instant what is the induced current in the coil
Answer:
6.169 μA
Explanation:
Formula for induced EMF is given by the equation;
EMF = M(di/dt). We are given;
di/dt = 2.5 A/s
M = 19μH = 19 × 10^(-6) H
Thus;
EMF = 19 × 10^(-6) × 2.5.
EMF = 47.5 × 10^(-6) V
Formula for current is;
i = EMF/R. R is resistance given as 7.7 ohms.
Thus; i = 47.5 × 10^(-6)/7.7
i = 6.169 μA
Answer :
The magnet produces a domain alignment that allows the iron become magnetic such that it is attracted to the original magnet.the magnetic iron can then create the same effect on another piece of iron.
Explanation:
the piece of magnet is brought closer to the iron where the domains of the iron align including the magnetic poles.
"Ocean surface currents are beautifully depicted in the drawing that accompanies this question."
Answer:
Explanation:
Displacement of train = 60 - 25 = 35 mile
= 35 x 1.6 = 56 km
duration of time = 45 - 15 = 30 minutes
= 30 x 60 = 1800 s
velocity of train = displacement / time
= 56 / 1800 = .03111 km /s
= 31.111 m / s