A valid hypothesis must have test for proving the observation and is realistic, it considers the varibales it wants to measure. And it is tested either finding significance or not in the relationship between the studied variables.
<span>They utilize and make use of the scientific method in order to have clear basis and evidence for their investigations. Research method is always used to answer every scientific inquiry and in gaining evidential data or knowledge. The scientific method has the following process or at least undergoes the process of
1. Observation</span>
2. Hypothesis
3. Experimentation
4. Interpretation of data
5. Evaluating the data
6. Passing and recording the data
<span>These steps are crucial and the empirical data that these scientists obtain are very important to keep that is why research paper, thesis and dissertations exists.<span>
</span></span>
Answer:
See bolded below.
Explanation:
Consider the " Before " and " After. " " Before, " this particle 1 was trying to catch up with this particle 2, and " after " particle one had collided with particle two. Take a look at the attachment below for a more detailed examination.
Here is how this will play out. Particle 1, with great velocity, will hit particle 2, which would mean that Particle 2 has less velocity than Particle 1. Now after the collision, energy is transferred to Particle 2, and while Particle 1 has now stopped in it's tracks, Particle 2 - with more energy than before - will continue as long as it has to before friction eventually brings it to a stop.
_______________________________________________________
From this we can conclude that Vf, from the picture below, must have less energy than V1, but more energy than V2 - and vice versa.
Answer:
Explanation:
Work done = ∫Fdx
= ∫(cx-3.00x²) dx
[ c x² / 2 - 3 x³ / 3 ]₀²
= change in kinetic energy
= 11-20
= - 9 J
[ c x² / 2 - x³ ]₀² = - 9
c x 2² / 2 - 2³ = -9
2c - 8 = -9
2c = -1
c = - 1/2
For this problem, we use the Coulomb's law written in equation as:
F = kQ₁Q₂/d²
where
F is the electrical force
k is a constant equal to 9×10⁹
Q₁ and Q₂ are the charge of the two objects
d is the distance between the two objects
Substituting the values:
F = (9×10⁹)(-22×10⁻⁹ C)(-22×10⁻⁹ C)/(0.10 m)²
F = 0.0004356 N