NaOH will dissociate as Na+ and OH- in the solution.
The kidneys will excrete increased quantities of acid.
Explanation:
The kidneys will excrete excess H+ ions in the blood (remember H+ ions are responsible for acidity) until the acid-base balance is restored in the blood. Bicarbonates, on the other hand, will be aggressively reabsorbed by the renal tubules as the excess H+ are being excreted.
The acid base balance is mainly determined by the quantities of H⁺ and HCO₃⁻ ions in teh blood. These ions come from the dissociation of carbonic acid formed when carbon dioxide from tissues is dissolved in blood plasma.
When calcium joins with calcium its follows the following equation:
2Ca + O2 = 2CaO
hope that helps
Answer:
x = 100 * 1.1897 = 118.97 %, which is > 100 meaning that all of the HClO2 dissociates
Explanation:
Recall that , depression present in freezing point is calculated with the formulae = solute particles Molarity x KF
0.3473 = m * 1.86
Solving, m = 0.187 m
Moles of HClO2 = mass / molar mass = 5.85 / 68.5 = 0.0854 mol
Molality = moles / mass of water in kg = 0.0854 / 1 = 0.0854 m
Initial molality
Assuming that a % x of the solute dissociates, we have the ICE table:
HClO2 H+ + ClO2-
initial concentration: 0.0854 0 0
final concentration: 0.0854(1-x/100) 0.0854x/100 0.0854x / 100
We see that sum of molality of equilibrium mixture = freezing point molality
0.0854( 1 - x/100 + x/100 + x/100) = 0.187
2.1897 = 1 + x / 100
x = 100 * 1.1897 = 118.97 %, which is > 100 meaning that all of the HClO2 dissociates
Answer:
This part require data such as Avogadro's number and the molar mass of water. But first, let's find the mass of water in the specified volume by making use of the density formula:
Density = mass/volume
1 g/mL = Mass/70 mL
Mass = 70 g
Each water contains 18 grams per mole, and each mole contains 6.022×10²³ molecules of water. Thus,
70 g * 1mole/18 g * 6.022×10²³ molecules/mole = 2.342×10²⁴ molecules of water
Explanation: