Answer:
24.9 L Ar
General Formulas and Concepts:
<u>Atomic Structure</u>
- Reading a Periodic Table
- Moles
- STP (Standard Conditions for Temperature and Pressure) = 22.4 L per mole at 1 atm, 273 K
<u>Aqueous Solutions</u>
<u>Stoichiometry</u>
- Using Dimensional Analysis
Explanation:
<u>Step 1: Define</u>
[Given] 40.0 g Ar
[Solve] L Ar
<u>Step 2: Identify Conversions</u>
[PT] Molar Mass of Ar - 39.95 g/mol
[STP] 22.4 L = 1 mol
<u>Step 3: Convert</u>
- [DA] Set up:

- [DA] Divide/Multiply [Cancel out units]:

<u>Step 4: Check</u>
<em>Follow sig fig rules and round. We are given 3 sig figs.</em>
24.9235 L Ar ≈ 24.9 L Ar
Answer:
433 m
Explanation:
Since the fall represents motion under gravity, we use the equation
s = ut - 1/2gt² where s = height of cliff or distance bowling ball falls through, u = initial velocity of bowling ball = 0 m/s(since it starts from rest), t = time = 9.4 s and g = acceleration due to gravity = -9.8 m/s².
So, substituting the values of the variables into the equation, we have
s = 0 m/s × 9.4 s - 1/2 × 9.8 m/s² × (9.4 s)²
s = 0 m - 1/2 × -9.8 m/s² × 88.36 s²
s = 1/2(865.928 m)
s = 432.964
s ≅ 433 m
Answer:
B. Excited state
Explanation:
Energy levels higher than the ground state are called the excited states. This concept is based on the premise that electrons can move round the nucleus in certain permissibe orbits or energy levels.
The ground state is the lowest energy state available to the electron. This is usually the most stable state.
The excited state is any level higher than the ground state. An electron in an energy level has a definite amount of energy associated with it at that level.
The balanced chemical reaction is written as:
<span>NaOH + HCl → NaCl + H2O
We are given the amount of sodium hydroxide to be used up in the reaction. This will be the starting point for the calculation.
2.75 x 10^-4 mol NaOH ( 1 mol H2O / 1 mol NaOH ) ( 18.02 g H2O / 1 mol H2O ) = 4.96 x 10^-3 g H2O</span>