The time required to reduce the concentration from 0.00757 M to 0.00180 M is equal to 1.52 × 10⁻⁴ s. The half-life period of the reaction is 9.98× 10⁻⁵s.
<h3>What is the rate of reaction?</h3>
The rate of reaction is described as the speed at which reactants are converted into products. A catalyst increases the rate of the reaction without going under any change in the chemical reaction.
Given the initial concentration of the reactant, C₀= 0.00757 M
The concentration of reactant after time t is C₁= 0.00180 M
The rate constant of the reaction, k = 37.9 M⁻¹s⁻¹
For the first-order reaction: 
0.00180 = 0.00757 - (37.9) t
t = 1.52 × 10⁻⁴ s
The half-life period of the reaction: 

Half-life of the reaction = 9.98 × 10⁻⁵s
Learn more about the rate of reaction, here:
brainly.com/question/13571877
#SPJ1
Answer: 1413.39 inches
Explanation:
<u>Formula for converting meters to inches</u>
Meters x 39.37 (roughly) = Value in inches
<u>Applying formula</u>
35.9 meters x 39.37 = 1413.39 inches (roughly)
Answer:
The reflection of sound waves
Explanation:
An echo is a reflection of sound that bounces of of one thing to another.
<span>Here are some
pH < 7
Sour taste (though you should never use this characteristic to identify an acid in the lab)
Reacts with a metal to form hydrogen gas Increases the H+ concentration in water
Donates H+ ions<span>
Turns blue litmus indicator red</span></span>
Answer:
25 grams of Mg(OH)2 will be produced by 14.424 gram of Mg3N2
Explanation:
The balanced equation is
Mg3N2 + 6H2O -> 3Mg(OH)2 + 2NH3
Molecular weight of magnesium nitride = 100.9494 g/mol
Molecular weight of magnesium hydroxide = 58.3197 g/mol
one mole of Mg3N2 produces three moles of 3Mg(OH)2
100.9494 g/mol of Mg3N2 produces 3* 58.3197 g/mol of Mg(OH)2
1 gram of Mg3N2 produces
grams of Mg(OH)2
Or 1.733 grams of Mg(OH)2 will be produced by 1 gram of Mg3N2
25 grams of Mg(OH)2 will be produced by 14.424 gram of Mg3N2