Answer:
This is a chemical symbol for Potassium Bromide
Answer:
(E) changing temperature
Explanation:
Consider the following reversible balanced reaction:
aA+bB⇋cC+dD
If we know the molar concentrations of each of the reaction species, we can find the value of Kc using the relationship:
Kc = ([C]^c * [D]^d) / ([A]^a * [B]^b)
where:
[C] and [D] are the concentrations of the products in the equilibrium; [A] and [B] reagent concentrations in equilibrium; already; b; c and d are the stoichiometric coefficients of the balanced equation. Concentrations are commonly expressed in molarity, which has units of moles / 1
There are some important things to remember when calculating Kc:
- <em>Kc is a constant for a specific reaction at a specific temperature</em>. If you change the reaction temperature, then Kc also changes
- Pure solids and liquids, including solvents, are not considered for equilibrium expression.
- The reaction must be balanced with the written coefficients as the minimum possible integer value in order to obtain the correct value of Kc
Answer:
334.2× 10²³ molecules
Explanation:
Given data:
Mass of water = 1 Kg ( 1000 g )
Number of molecules = ?
Solution:
Number of moles of water:
Number of moles = mass/ molar mass
Number of moles = 1000 g/ 18 g/mol
Number of moles = 55.5 mol
1 mole contain 6.022× 10²³ molecules
55.5 mol×6.022× 10²³ molecules
334.2× 10²³ molecules
Answer:
2 CH2 + 3 O2 = 2 CO2 + 2 H2O
Explanation:
This is what I think that you meant by the question listed. When balancing a chemical equation, you want to make sure that there are equal amounts of each element on each side.
Originally, the equation's elements looked like this: 1 C on left & 1 C on right; 2 H on left & 2 H on right; 2 O on left and 3 O on right. Because these are not balanced, you need to add coefficients.
When adding coefficients, you need to make sure that all of the elements stay balanced, not just one that you are trying to fix. I know that some equations are really difficult to balance, and when that is the case, there are equation balancing websites that can help out.
However, what always helps me is making a chart and continuing to keep up with the changes I am making. It is a trial and error process.