Answer:
Explanation:
3.
Knowns: 100mL of solution; concentration of 0.7M
Unknown: number of moles
Equation: number of moles = volume * concentration
Plug and Chug: number of moles = 100/1000 * 0.7 = 0.07 mole
Final Answer: 0.07mole
2.
Knowns: 5.50L of solution; concentration of 0.400M
Unknown: number of moles
Equation: number of moles = volume * concentration
Plug and Chug: number of moles = 5.5 * 0.4 = 2.20 mole
Final Answer: 2.20 mole
Answer:
True
Explanation:
Evaporation is the process by which a substance changes its state from liquid to gas. evaporation occurs at all temperatures but it's rate increases as temperature increases.
Pure water vapour can be produced by evaporation.
As the liquids are removed, the solids present in solution becomes more concentrated.
Answer:
0.37atm
Explanation:
Given parameters:
Initial pressure = 0.25atm
Initial temperature = 0°C = 273K
Final temperature = 125°C = 125 + 273 = 398K
Unknown:
Final pressure = ?
Solution:
To solve this problem, we use a derivative of the combined gas law;
=
P and T are pressure and temperature
1 and 2 are initial and final values
=
P2 = 0.37atm
Molality= mol/ Kg
if we assume that we have 1 kg of water, we have 3.19 moles of solute.
the formula for mole fraction --> mole fraction= mol of solule/ mol of solution
1) if we have 1 kg of water which is same as 1000 grams of water.
2) we need to convert grams to moles using the molar mass of water
molar mass of H₂O= (2 x 1.01) + 16.0 = 18.02 g/mol
1000 g (1 mol/ 18.02 grams)= 55.5 mol
3) mole of solution= 55.5 moles + 3.19 moles= 58.7 moles of solution
4) mole fraction= 3.19 / 58.7= 0.0543