Answer:
The correct answer is "proteins in which isoleucine is inserted at some positions normally occupied by leucine".
Explanation:
The missing options of this question are:
A. proteins in which leucine is inserted at some positions normally occupied by isoleucine.
B. proteins in which isoleucine is inserted at some positions normally occupied by leucine.
C. no abnormal proteins, because the ribosomal translation machinery will recognize the inappropriately activated tRNAs and exclude them from the translation process.
D. no proteins, because the inappropriately activated tRNAs will block translation
The correct answer is option B. "proteins in which isoleucine is inserted at some positions normally occupied by leucine".
In normal conditions, the enzyme leucyl-tRNA synthetase attaches one leucine amino acid to leucyl-tRNA as part of synthesis of proteins that have one or more leucine residues in their sequences. Since the enzyme of this mutant strain of bacteria mistakenly attaches isoleucine to leucyl-tRNA 10% of the time, approximately 10% of all the proteins that normally have leucine residues will going to have isoleucine. Therefore, These bacteria will synthesize proteins in which isoleucine is inserted at some positions normally occupied by leucine.
ATP is the most important product of the krebs cycle(36 moles)
Answer:
The reduction of the oxidized ubiquinone led to the intake of two electrons as well as two protons from water molecules, as shown in Figure 14-19. The protons are further liberated during oxidation. If there is oxidation at one side and reduction at second side of the membrane, There is the movement of one proton for every electron that moves through the membrane. Thus, the movement of electron by the oxidized ubiquinone influences the production of H+ gradient.
Explanation:
The reduction of the oxidized ubiquinone led to the intake of two electrons as well as two protons from water molecules, as shown in Figure 14-19. The protons are further liberated during oxidation. If there is oxidation at one side and reduction at the second side of the membrane, There is the movement of one proton for every electron that moves through the membrane. Thus, the movement of an electron by the oxidized ubiquinone influences the production of the H+ gradient.
Ciliate- D
Spore- C
Alge - A
Protozoan- B
Hope this helps!
-Payshence xoxo