the greater the <u>mass</u> of an object the more force is needed to cause acceleration
An independent variable is the variable that is changed or controlled in a scientific experiment to test the effects on the dependent variable. A dependent variable is the variable being tested and measured in a scientific experiment.
The P value for the given data set is 25127. For finding P value, we have to must find the Z value.
<h3>How to get the z scores?</h3>
If we've got a normal distribution, then we can convert it to standard normal distribution and its values will give us the z score.
The Z value is calculated as;

Z = (X - μ) / σ
Z = (4.007 - 3.6) / 0.607
Z = 0.67051
The P value for the given data set is 25127.
Learn more about z-score here:
brainly.com/question/21262765
#SPJ1
Answer:
R = m⁴/kg . s
Explanation:
In this case, the best way to solve this is working with the units in the expression.
The units of velocity (V) are m/s
The units of density (d) are kg/m³
And R is a constant
If the expression is:
V = R * d
Replacing the units and solving for R we have
m/s = kg/m³ * R
m * m³ / s = kg * R
R = m * m³ / kg . s
<h2>
R = m⁴ / kg . s</h2>
This should be the units of R
Hope this helps
Answer:

Explanation:
Assume that the distance travelled initially is d.
In order to stop the block you need some external force which is friction.
If we use the law of energy conservation:

a)
Looking at the formula you can see that the mass doesn't affect the distance travelled, as lng as the initial velocity is constant (Which indicates that the force must be higher to push the block to the same speed) therefore the distance is the same.
b) If the velocity is doubled, then the distance travelled is multiplied by 4, because the distance deppends on the square of the velocity.