Answer:
h = 206.4 m
range = 515.9 m
Explanation:
from the question we are given the following:
initial velocity (u) = 75 m/s
angle above surface = 58 degrees
acceleration due to gravity (g) = 9.8 m/s^{2}
find the maximum height (h) and the horizontal distance
maximum height (h) = 
h = 
h = 206.4 m
the horizontal distance here is the range
range = 
range = 
range = 515.9 m
Answer:
Existen cinco actividades en las que se mantiene una postura corporal incorrecta:
1) Sentarse en una silla.
2) Agacharse y levantar una objeto del piso, especialmente cuando es pesado.
3) Sentarse en un escritorio, especialmente frente a una computadora.
4) Llevar una mochila, especialmente si está sobrecargada.
5) Dormir sobre una cama en una posición inadecuada.
Explanation:
Existen cinco actividades en las que se mantiene una postura corporal incorrecta:
1) Sentarse en una silla.
2) Agacharse y levantar una objeto del piso, especialmente cuando es pesado.
3) Sentarse en un escritorio, especialmente frente a una computadora.
4) Llevar una mochila, especialmente si está sobrecargada.
5) Dormir sobre una cama en una posición inadecuada.
The angular speed of the playground ride is determined as 0.3 rad/s.
<h3>
What is angular speed?</h3>
Angular speed is the rate at which an object changes it angles which we measure in radians in a given time.
<h3>
Angular speed of the ride</h3>
The angular speed of the ride if the ride makes one complete revolution is calculated as follows;
ω = θ/t
ω = 2π/t
where;
- ω is angular speed of the ride
- t is time of motion of the ride
one complete revolution = 2π radians
ω = 2π/21
ω = 0.3 rad/s
Thus, the angular speed of the playground ride is determined as 0.3 rad/s.
Learn more about angular speed here: brainly.com/question/24158647
#SPJ1
The complete question is below;
A playground ride requires 21 seconds to make one complete revolution, what is angular speed of the ride in radian per second.
Answer:
12.7 m
Explanation:
The following data were obtained from the question:
Initial velocity (u) = 56.7 Km/hr
Maximum height (h) =..?
First, we shall convert 56.7 Km/hr to m/s. This can be obtained as follow:
Initial velocity (m/s) = 56.7 x 1000/3600
Initial velocity (m/s) = 15.75 m/s
Next, we shall determine the time taken to get to the maximum height. This can be obtained as follow:
Initial velocity (u) = 15.75 m/s
Final velocity (v) = 0 m/s
Acceleration due to gravity (g) = 9.8 m/s²
Time (t) =?
v = u – gt (since the ball is going against gravity)
0 = 15.75 – 9.8 × t
Rearrange
9.8 × t = 15.75
Divide both side by 9.8
t = 15.75/9.8
t = 1.61 secs.
Finally, we shall determine the maximum height as follow
h = ½gt²
Acceleration due to gravity (g) = 9.8 m/s²
Time (t) = 1.61 secs.
Height (h) =..?
h = ½gt²
h = ½ × 9.8 × 1.61²
h = 4.9 x 1.61²
h = 12.7 m
Therefore, the maximum height reached by the ball is 12.7 m
Answer:
E = 2,575 eV
Explanation:
For this exercise we will use the Planck equation and the relationship of the speed of light with the frequency and wavelength
E = h f
c = λ f
Where the Planck constant has a value of 6.63 10⁻³⁴ J s
Let's replace
E = h c / λ
Let's calculate for wavelengths
λ = 4.83 10-7 m (blue)
E = 6.63 10⁻³⁴ 3 10⁸ / 4.83 10⁻⁷
E = 4.12 10-19 J
The transformation from J to eV is 1 eV = 1.6 10⁻¹⁹ J
E = 4.12 10⁻¹⁹ J (1 eV / 1.6 10⁻¹⁹ J)
E = 2,575 eV