5/8=10×w this is my equation then i divide by 10 on both sides
w=6.25
Answer:
$161.28288 or $161.28 if rounded
Step-by-step explanation:
first find 10% of the original cost
186.67/10 =18.667
18.667 x 2 = 37.334 (20%)
186.67 - 37.334 = 149.336
to find the tax, mulitple 149.336 x 1.08
1.08 because, 100% of the cost, plus 8% of the cost for tax
= 161.28288
<span>4−(2x+4)=5
4 - 2x - 4 = 5
-2x = 5
x = -5/2
x = - 2.5</span>
Answer:
x = 12
Step-by-step explanation:
By applying geometric root theorem in the given triangle,





Therefore, x = 12 will be the answer.
By definition of tangent,
tan(2<em>θ</em>) = sin(2<em>θ</em>) / cos(2<em>θ</em>)
Recall the double angle identities:
sin(2<em>θ</em>) = 2 sin(<em>θ</em>) cos(<em>θ</em>)
cos(2<em>θ</em>) = cos²(<em>θ</em>) - sin²(<em>θ</em>) = 2 cos²(<em>θ</em>) - 1
where the latter equality follows from the Pythagorean identity, cos²(<em>θ</em>) + sin²(<em>θ</em>) = 1. From this identity we can solve for the unknown value of sin(<em>θ</em>):
sin(<em>θ</em>) = ± √(1 - cos²(<em>θ</em>))
and the sign of sin(<em>θ</em>) is determined by the quadrant in which the angle terminates.
<em />
We're given that <em>θ</em> belongs to the third quadrant, for which both sin(<em>θ</em>) and cos(<em>θ</em>) are negative. So if cos(<em>θ</em>) = -4/5, we get
sin(<em>θ</em>) = - √(1 - (-4/5)²) = -3/5
Then
tan(2<em>θ</em>) = sin(2<em>θ</em>) / cos(2<em>θ</em>)
tan(2<em>θ</em>) = (2 sin(<em>θ</em>) cos(<em>θ</em>)) / (2 cos²(<em>θ</em>) - 1)
tan(2<em>θ</em>) = (2 (-3/5) (-4/5)) / (2 (-4/5)² - 1)
tan(2<em>θ</em>) = 24/7