The domain is the limits of the function. Since time doesnt go negative, start with 0. At time 0, the height is
-16(0)^2 + 144 = 144ft
Then, solve for t to find the upper limit for t, which is when the height is zero (since you're dropping the object).
-16t^2 + 144 = 0
-16t^2 = -144
t^2 = 9
t = sqrt(9)
t = 3
The domain is 0 to 3 seconds.
Answer:
μ ≈ 2.33
σ ≈ 1.25
Step-by-step explanation:
Each person has equal probability of ⅓.
![\left[\begin{array}{cc}X&P(X)\\1&\frac{1}{3}\\2&\frac{1}{3}\\4&\frac{1}{3}\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7DX%26P%28X%29%5C%5C1%26%5Cfrac%7B1%7D%7B3%7D%5C%5C2%26%5Cfrac%7B1%7D%7B3%7D%5C%5C4%26%5Cfrac%7B1%7D%7B3%7D%5Cend%7Barray%7D%5Cright%5D)
The mean is the expected value:
μ = E(X) = ∑ X P(X)
μ = (1) (⅓) + (2) (⅓) + (4) (⅓)
μ = ⁷/₃
The standard deviation is:
σ² = ∑ (X−μ)² P(X)
σ² = (1 − ⁷/₃)² (⅓) + (2 − ⁷/₃)² (⅓) + (4 − ⁷/₃)² (⅓)
σ² = ¹⁴/₉
σ ≈ 1.25