Answer with explanation:
let, Z= a + i b,be a complex number.
Where, a = r cos A
b= r sin A


Now, if we replace A, by, 2 kπ + A,in the above equation,where k is any positive integer,beginning from ,0.k=0,1,2,3,4,....
![Z=r cos (2k\pi +A) + i r sin(2k\pi + A)\\\\Z=r[cos (2k\pi +A) + i sin(2k\pi + A)]\\\\ Z=re^{i(2k\pi +A)}](https://tex.z-dn.net/?f=Z%3Dr%20cos%20%282k%5Cpi%20%2BA%29%20%2B%20i%20r%20sin%282k%5Cpi%20%2B%20A%29%5C%5C%5C%5CZ%3Dr%5Bcos%20%282k%5Cpi%20%2BA%29%20%2B%20i%20sin%282k%5Cpi%20%2B%20A%29%5D%5C%5C%5C%5C%20Z%3Dre%5E%7Bi%282k%5Cpi%20%2BA%29%7D)
So, for different value of , k ,there will be Different Complex number.
→So,the Statement: The trigonometric form of a complex number is unique = False