A and 0 both equals 45 degrees
Answer:
The area of the clock 
Step-by-step explanation:
We have been given the face of the clock that is 
So that is also the circumference of the clock.
Since the clock is circular in shape.
So 
From here we will calculate the value of radius
of the clock that is circular in shape.
Then 
Now to find the area of the clock we will put this value of (r) in the equation of area of the circle.
Now 
So the area of the face of the clock =
Answer:
yes , This is an example of the associative property.
Step-by-step explanation:
These are the steps, with their explanations and conclusions:
1) Draw two triangles: ΔRSP and ΔQSP.
2) Since PS is perpendicular to the segment RQ, ∠ RSP and ∠ QSP are equal to 90° (congruent).
3) Since S is the midpoint of the segment RQ, the two segments RS and SQ are congruent.
4) The segment SP is common to both ΔRSP and Δ QSP.
5) You have shown that the two triangles have two pair of equal sides and their angles included also equal, which is the postulate SAS: triangles are congruent if any pair of corresponding sides and their included angles are equal in both triangles.
Then, now you conclude that, since the two triangles are congruent, every pair of corresponding sides are congruent, and so the segments RP and PQ are congruent, which means that the distance from P to R is the same distance from P to Q, i.e. P is equidistant from points R and Q