The vertex U' is located at (-4, -5)
<h3>How to determine the location of U'?</h3>
The vertices are given as:
U = (-4, 5)
V = (-6, 2)
The rule of transformation is given as:
Reflection across the x-axis
This is represented as:
(x, y) => (x, -y)
So, we have:
U' = (-4, -5)
Hence, the vertex U' is located at (-4, -5)
Read more about transformation at:
brainly.com/question/11707700
#SPJ1
<u>Complete question</u>
Quadrilateral UVWX is reflected over the x-axis to form quadrilateral U′V′W′X′. If vertex U is located at (-4, 5) and vertex V is located at (-6, 2), then vertex U′ is located at
Answer:
the answer is 6.
Step-by-step explanation:

It is 397.8 bc if u make 530.4 a fraction = 530.4/1 then u just multiply it by 3/4 u will get 1591.2/4 then u simply reduce it by dividing ( top in , bottom out ) and u get 397.8
Answer: hope this helps
Step-by-step explanation:
Answer:
8cm and 9cm
Step-by-step explanation:
8cm and 9cm would be the two possible lengths for the triangle because for the triangle to work you need the other two other sides when added together needs to be greater then 13. Furthermore 5 + 8 = 13 and as 13 is the same length as the one side that is given, a triangle couldn't possibly be formed as it would just be a straight line. Moreover, this is the same with 6 + 7 which is also 13. 7 + 2 is 9 and because 9<13 a triangle couldn't possibly be formed. Finally, 8 + 9 which equals to 17 are the only two possible lengths for the triangle as 17 > 12.