<u>Given </u><u>:</u><u>-</u><u> </u>
<u>To </u><u>Find</u><u> </u><u>:</u><u>-</u><u> </u>
- To find the factorised form .
<u>Answer</u><u> </u><u>:</u><u>-</u><u> </u>
Taking the given expression,
→ 4x² - 8x + 4
→ 4x² - 4x -4x + 4
→ 4x ( x - 1 ) -4( x -1)
→ (4x - 4)(x-1)
<u>Hence </u><u>the</u><u> </u><u>required</u><u> answer</u><u> is</u><u> </u><u>(</u><u>4</u><u>x</u><u> </u><u>-</u><u> </u><u>4</u><u>)</u><u>(</u><u> </u><u>x </u><u>-</u><u> </u><u>1</u><u>)</u><u> </u><u>.</u>
Answer:
x^4-9x^3+39x^2-225x+350
Step-by-step explanation:
The simplest polynomial you can get with that roots are (x-5i)(x+5i)(x-2)(x-7)=x^4-9x^3+39x^2-225x+350
9514 1404 393
Answer:
- 2nd force: 99.91 lb
- resultant: 213.97 lb
Step-by-step explanation:
In the parallelogram shown, angle B is the supplement of angle DAB:
∠B = 180° -77°37' = 102°23'
Angle ACB is the difference of angles 77°37' and 27°8', so is 50°29'.
Now, we know the angles and one side of triangle ABC. We can use the law of sines to solve for the other two sides.
BC/sin(A) = AB/sin(C)
AD = BC = AB·sin(A)/sin(C) = (169 lb)sin(27°8')/sin(50°29') ≈ 99.91 lb
AC = AB·sin(B)/sin(C) = (169 lb)sin(102°23')/sin(50°29') ≈ 213.97 lb
The answer is b 60 degrees <span />