Answer:
see below
Step-by-step explanation:
The first part of the function, f(x) = -2x (for x < -1), is only graphed correctly in the first and third graphs.
The second part of the function, f(x) = -1 (for -1 ≤ x < 2) is only graphed correctly in the first graph, which also correctly graphs the third part of the function,
The appropriate choice is the first graph.
Answer:
2x2+17x+28/x+6
Step-by-step explanation:
Answer:
The answer to your question is:
Step-by-step explanation:
1.-
![\frac{1 + sin\alpha }{cos\alpha } + \frac{cos\alpha }{1 + sin\alpha } = 2 sec\alpha](https://tex.z-dn.net/?f=%5Cfrac%7B1%20%2B%20sin%5Calpha%20%7D%7Bcos%5Calpha%20%7D%20%2B%20%5Cfrac%7Bcos%5Calpha%20%7D%7B1%20%2B%20sin%5Calpha%20%7D%20%3D%202%20sec%5Calpha)
![\frac{(1 + sin\alpha)^{2} + cos^{2} \alpha }{cos\alpha (1 + sin\alpha) }](https://tex.z-dn.net/?f=%5Cfrac%7B%281%20%2B%20sin%5Calpha%29%5E%7B2%7D%20%2B%20cos%5E%7B2%7D%20%5Calpha%20%20%7D%7Bcos%5Calpha%20%281%20%2B%20sin%5Calpha%29%20%7D)
![\frac{1 + 2sin\alpha + sin^{2} \alpha+ cos^{2} \alpha }{cos\alpha + sin\alphacos\alpha }](https://tex.z-dn.net/?f=%5Cfrac%7B1%20%20%2B%202sin%5Calpha%20%2B%20sin%5E%7B2%7D%20%5Calpha%2B%20cos%5E%7B2%7D%20%5Calpha%20%20%7D%7Bcos%5Calpha%20%2B%20sin%5Calphacos%5Calpha%20%20%7D)
![\frac{2 + 2sin\alpha }{cos\alpha+ sin\alpha cos\alpha }](https://tex.z-dn.net/?f=%5Cfrac%7B2%20%2B%202sin%5Calpha%20%7D%7Bcos%5Calpha%2B%20sin%5Calpha%20cos%5Calpha%20%20%7D)
![\frac{2(1 + sin\alpha) }{cos\alpha(1 + sin\alpha ) }](https://tex.z-dn.net/?f=%5Cfrac%7B2%281%20%2B%20sin%5Calpha%29%20%7D%7Bcos%5Calpha%281%20%2B%20sin%5Calpha%20%29%20%7D)
![\frac{2}{cos\alpha }](https://tex.z-dn.net/?f=%5Cfrac%7B2%7D%7Bcos%5Calpha%20%7D)
2sec![\alpha](https://tex.z-dn.net/?f=%5Calpha)
2.-
sec²x - tanxsecx
![\frac{1}{cos^{2}x } - \frac{sinx}{cosx} \frac{1}{cosx}](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7Bcos%5E%7B2%7Dx%20%7D%20-%20%5Cfrac%7Bsinx%7D%7Bcosx%7D%20%5Cfrac%7B1%7D%7Bcosx%7D)
![\frac{1}{cos^{2} x} - \frac{sinx}{cos^{2}x}](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7Bcos%5E%7B2%7D%20x%7D%20-%20%5Cfrac%7Bsinx%7D%7Bcos%5E%7B2%7Dx%7D)
![\frac{1 - sinx}{cos^{2}x }](https://tex.z-dn.net/?f=%5Cfrac%7B1%20-%20sinx%7D%7Bcos%5E%7B2%7Dx%20%7D)
![\frac{1 - sinx}{1 - sin^{2}x }](https://tex.z-dn.net/?f=%5Cfrac%7B1%20-%20sinx%7D%7B1%20-%20sin%5E%7B2%7Dx%20%7D)
![\frac{1 - sinx}{(1 - sinx)(1 + sinx)}](https://tex.z-dn.net/?f=%5Cfrac%7B1%20-%20sinx%7D%7B%281%20-%20sinx%29%281%20%2B%20sinx%29%7D)
![\frac{1}{1 + sinx}](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B1%20%2B%20sinx%7D)
Answer:
D 6
Step-by-step explanation:
Normally when I multiply mixed numbers, I change them to improper fractions first so that it is easier.
1
× 5 =
× 5
Multiply 5 by the numerator of the fraction and leave the denominator alone.
× 5 =
Change back to simplest form.
= 6
Answer:
193900
Step-by-step explanation:
thx for points