Answer:
The values of x for which the model is 0 ≤ x ≤ 3
Step-by-step explanation:
The given function for the volume of the shipping box is given as follows;
V = 2·x³ - 19·x² + 39·x
The function will make sense when V ≥ 0, which is given as follows
When V = 0, x = 0
Which gives;
0 = 2·x³ - 19·x² + 39·x
0 = 2·x² - 19·x + 39
0 = x² - 9.5·x + 19.5
From an hint obtained by plotting the function, we have;
0 = (x - 3)·(x - 6.5)
We check for the local maximum as follows;
dV/dx = d(2·x³ - 19·x² + 39·x)/dx = 0
6·x² - 38·x + 39 = 0
x² - 19/3·x + 6.5 = 0
x = (19/3 ±√((19/3)² - 4 × 1 × 6.5))/2
∴ x = 1.288, or 5.045
At x = 1.288, we have;
V = 2·1.288³ - 19·1.288² + 39·1.288 ≈ 22.99
V ≈ 22.99 in.³
When x = 5.045, we have;
V = 2·5.045³ - 19·5.045² + 39·5.045≈ -30.023
Therefore;
V > 0 for 0 < x < 3 and V < 0 for 3 < x < 6.5
The values of x for which the model makes sense and V ≥ 0 is 0 ≤ x ≤ 3.
Considering that each student has only one birthday, each input will be related to only one output, hence this relation is a function.
<h3>When does a relation represent a function?</h3>
A relation represents a function when each value of the input is mapped to only one value of the output.
For this problem, we have that:
- The input is the student's name.
- The output is the student's birthday.
Each student has only one birthday, hence each input will be related to only one output, hence this relation is a function.
More can be learned about relations and functions at brainly.com/question/12463448
#SPJ1
Answer:
y = 8
Step-by-step explanation:
Hello!
We can solve for y by isolating it.
<h3>Solve for y</h3>
- 3y - 15 = y + 1
- 3y - 15 - y = y +1 - y
- 2y - 15 = 1
- 2y - 15 + 15 = 1 + 15
- 2y = 16
- y = 16/2
- y = 8
The value of y is 8.
Answer:
its D
Step-by-step explanation:
because if you look it say because how many charms it have is how much it cost
Step-by-step explanation:
No Not an answer
21=x-5
x=26