Answer: a. -720m/s^2
b. Yes, airbags will deploy
Explanation:
The formula for acceleration is:
= (Final velocity - Initial velocity)/Time
Final velocity = 0m/s
Initial velocity = 36m/s
Time taken = 0.05s
= (Final velocity - Initial velocity)/Time
= (0 - 36)/0.05
= -36/0.05
= -720m/s^2.
Since it's negative, it shows that there was a deceleration.
2. Yes the airbag will deploy since the acceleration gotten is more than -600 m/s^2.
Explanation:
According to the law of conservation of energy
,
Potential energy = kinetic energy
I =
mgh =
v = 7.4 m/s
thus, we can conclude that the translational speed of the cylinder when it leaves the incline is 7.4 m/s.
Answer:
4.17 m/s²
Explanation:
We are told the reaction time is 0.2 s. Now, during this reaction time the car is going to travel an additional distance of
: x = u × t = 40 × 0.2 = 8 m
where u is the initial velocity of the car which is 40.0 m/s.
We are told that he had 200 m to stop before applying brakes. Thus, after applying brakes, he now has a distance to cover of; s = 200 - 8 = 192 m
Since vehicle is coming to rest acceleration would be negative, thus using Newton's equation of motion, we have;
v
² = u² - 2as
v = 0 m/s since it's coming to rest
u = 40 m/s
s = 192 m
Thus;
0² = 40² - 2(a)(192)
0² = 1600 - 384a
a = 1600/384
a = 4.17 m/s²
Answer:
it's important because it shows how thermal energy transforms or continues to be all around us in everything