Then we would not have oxygen because plants give oxygen in order to breathe
Answer:
See picture below
Explanation:
You are not providing the starting compound. However, I found a similar question so, I will draw the product of this compound, and then, you follow the same procedure.
As the problem states, the diazomethane is often used in reaction with carboxilic acid. This kind of reaction will do an esterification reaction, and the final product will always result in an esther.
So, with the example I give you here, all you have to do is replace the OH in the carboxilic group of your initial compound, for the OCH₃ group.
See picture below.
Hope this helps
Answer:
2,2,3-trimethyl-pentane
Explanation:
The longest chain is 5 carbons so the parent chain is a pentane. There are two methyl groups coming off the second carbon in the chain and 1 methyl group coming off the 3rd carbon in the chain. In total there are 3 methyl groups, hence we get 2,2,3-trimethyl-pentane.
Specific heat is another physical property of matter. All matter has a temperature associated with it. The temperature of matter is a direct measure of the motion of the molecules: The greater the motion the higher the temperature:

Motion requires energy: The more energy matter has the higher temperature it will also have. Typicall this energy is supplied by heat. Heat loss or gain by matter is equivalent energy loss or gain.
With the observation above understood we con now ask the following question: by how much will the temperature of an object increase or decrease by the gain or loss of heat energy? The answer is given by the specific heat (S) of the object. The specific heat of an object is defined in the following way: Take an object of mass m, put in x amount of heat and carefully note the temperature rise, then S is given by

In this definition mass is usually in either grams or kilograms and temperatture is either in kelvin or degres Celcius. Note that the specific heat is "per unit mass". Thus, the specific heat of a gallon of milk is equal to the specific heat of a quart of milk. A related quantity is called the heat capacity (C). of an object. The relation between S and C is C = (mass of obect) x (specific heat of object). A table of some common specific heats and heat capacities is given below:
Some common specific heats and heat capacities: Substance S (J/g 0C) C (J/0C) for 100 g Air 1.01 101 Aluminum 0.902 90.2 Copper 0.385 38.5 Gold 0.129 12.9 Iron 0.450 45.0 Mercury 0.140 14.0 NaCl 0.864 86.4 Ice 2..03 203 Water 4.179 417.9
Consider the specific heat of copper , 0.385 J/g 0C. What this means is that it takes 0.385 Joules of heat to raise 1 gram of copper 1 degree celcius. Thus, if we take 1 gram of copper at 25 0C and add 1 Joule of heat to it, we will find that the temperature of the copper will have risen to 26 0C. We can then ask: How much heat wil it take to raise by 1 0C 2g of copper?. Clearly the answer is 0.385 J for each gram or 2x0.385 J = 0.770 J. What about a pound of copper? A simple way of dealing with different masses of matter is to dtermine the heat capacity C as defined above. Note that C depends upon the size of the object as opposed to S that does not.
We are not in position to do some calculations with S and C.
Example 1: How much energy does it take to raise the temperature of 50 g of copper by 10 0C?

Example 2: If we add 30 J of heat to 10 g of aluminum, by how much will its temperature increase?

Thus, if the initial temperture of the aluminum was 20 0C then after the heat is added the temperature will be 28.3 0C.