Answer: The pH will be 3.87
Explanation:
pH or pOH is the measure of acidity or alkalinity of a solution.
pH is calculated by taking negative logarithm of hydrogen ion concentration.
![pH=-\log [H^+]](https://tex.z-dn.net/?f=pH%3D-%5Clog%20%5BH%5E%2B%5D)

According to stoichiometry,
1 mole of
gives 1 mole of
Thus
moles of
gives =
moles of
Putting in the values:
![pH=-\log[0.000134]](https://tex.z-dn.net/?f=pH%3D-%5Clog%5B0.000134%5D)

Thus the pH will be 3.87
Answer is: because they were using simple chemical reactions to transform elements, but that is possible only with nuclear reactions, which in that time were not possible to conduct.
Nuclear reactions can produce new elements, because number of protons and neutrons is changed, lead and gold have different atomic and mass numbers.
The electrons of an atom participates in a chemical reaction, chemical reactions involve the rearrangement of electrons, because there is transfer, loss, gain and sharing of electrons in chemical reactions, new elements are not formed.
There are two big advantages of using molarity to express concentration. The first advantage is that it's easy and convenient to use because the solute may be measured in grams, converted into moles, and mixed with a volume.
The second advantage is that the sum of the molar concentrations is the total molar concentration. This permits calculations of density and ionic strength
<span>Answer: option (1) solubility of the solution increases.
</span><span />
<span>Justification:
</span><span />
<span>The solubility of substances in a given solvent is temperature dependent.
</span><span />
<span>The most common behavior of the solubility of salts in water is that the solubiilty increases as the temperature increase.
</span><span />
<span>To predict with certainty the solubility at different temperatures you need the product solubility constants (Kps), which is a constant of equlibrium of the dissolution of a ionic compound slightly soluble in water, or a chart (usually experimental chart) showing the solubilities at different temperatures.
</span><span />
<span>KClO₃ is a highly soluble in water, so you do not work with Kps.
</span><span />
<span>You need the solubility chart or just assume that it has the normal behavior of the most common salts. You might know from ordinary experience that you can dissolve more sodium chloride (table salt) in water when the water is hot. That is the same with KClO₃.
</span><span>The solubility chart of KlO₃ is almost a straight line (slightly curved upward), with positive slope (ascending from left to right) meaning that the higher the temperature the more the amount of salt that can be dissolved.</span>
Delta T= T final - T initial
Tfinal= -101.1 °C
Tinitial= -0.5 °C
•Delta T = -101.1°C - (-0.5°C)
=100.6°C
Kelvin= °C + 273
= -100.6 + 273
= 172.4 Kelvin