Answer:
Part 11)
, 
Part 2) 4+3i
Step-by-step explanation:
Part 11) write a recursive rule for the sequence

Let

we know that
----> 
----> 
----> 
This is an arithmetic sequence
In an Arithmetic Sequence the difference between one term and the next is a constant, and this constant is called the common difference (d).
In this problem the common difference is equal to 
therefore
A recursive rule for the sequence is

substitute the value of d

where

Part 12) What is the complex conjugate of 4-3i?
we know that
The <u><em>complex conjugate</em></u> of a complex number is the number with an equal real part and an imaginary part equal in magnitude but opposite in sign
so
we have that
the real part of the given number is 4 and the the imaginary part is -3i
so
the imaginary part equal in magnitude but opposite in sign is +3i
therefore
the complex conjugate of the given number is equal to

Answer: 0.2358
Step-by-step explanation:
Using Normal Distribution, under the standard normal curve
The area to the right of z is given by P(Z>z)=1-P(Z<z)
So, the area to the right of z= 0.72 under the standard normal curve would be:
P(Z>0.72)=1-P(z<0.72)
=1-0.7642 [By using p-value table]
= 0.2358
Hence, the area to the right of z= 0.72 under the standard normal curve is 0.2358 .
Answer:
72
Step-by-step explanation:
since the 4 is a triangle you must divide the 4 by 2 to get 2 then add 2 to 10 to get 12 and multiply 12 by 6 to get 72. Make sense?
Answer:
2p
Step-by-step explanation:
u got ig??