Answer:
The possible frequencies for the A string of the other violinist is 457 Hz and 467 Hz.
(3) and (4) is correct option.
Explanation:
Given that,
Beat frequency f = 5.0 Hz
Frequency f'= 462 Hz
We need to calculate the possible frequencies for the A string of the other violinist
Using formula of frequency
...(I)
...(II)
Where, f= beat frequency
f₁ = frequency
Put the value in both equations


Hence, The possible frequencies for the A string of the other violinist is 467 Hz and 457 Hz.
Answer:
26000 years
Explanation:
Precession describes the angular motion of the Earth's body. Since the attitude of telescopes relative to the Earth's body can be controlled with high accuracy, and telescopes can measure the direction of incoming light also with high accuracy, the motion of Earth is under permanent high precision monitoring. Thus the basic numerical descriptor of precission, an angular rate of 5029.0966 seconds of arc per Julian century, traditionally denoted p (for precession) is a measured value from observed coordinate changes of thousands of stars over, say, two centuries. The understanding of this value in terms of forces acting on an oblate Earth from the Moon is well understood so that an extrapolation back and forth over a few full cycles contains little uncertainties. Of course, you can find details on the coordinate transformations mentioned above (the direct observational effect of precession) on the net. I was surprised to see that the Wikipedia article on precession covers the astronomical aspect very poorly. You thus better look for other sources.
Answer:
Wsep = Wmix
Explanation:
When Cream and milk up in a bottle they might appear homogeneous but after the bottle must have settled down for a while i.e kept in a position without shaking the bottle. the contents ( cream and milk ) will be separated. this is because Milk and cream do not mix up just like some other liquids that don't mix-up. Wmix represents the weight of the bottle before separation while Wsep represents the weight after separation. but since both liquids are in the same bottle the weight after separation would remain the same
Wsep = Wmix
Answer:
ΔS= -1 J/K
Explanation:
Given data
Heat Q= -470J
Temperature T=470 K
To find
Entropy change ΔS
Solution
We know that the entropy change of system is ΔS is given by
ΔS=Q/T
We have take heat value Q as negative because the heat is removed from heat reservoir
So
ΔS=(-470J/470K)
ΔS= -1 J/K
R = V/I = 9 / 0.3
R = <span>30 ohms.</span>