Answer:
B. Longer than t s,
Explanation:
Gravitational accln on earth is 9.8 m/s^2,
and one you provided as on moon is 1.6 m/s^2
that mean on moon gr. accl. is lesser!
now the time taken on earth will be lesser cuz from the same height if you drop the object from rest!
since accln on earth is higher,the object will attain higher velocity as compare to that of on moon!
✌️:)
Explanation:
Graph A matches description 4 because the car is coming back.
Graph B matches description 3 because the speed of the car is decreasing.
Graph C matches the description 2 because the car is traveling at a constant rate.
Graph D matches the description 1 because the car is stopped.
31 m/s ÷ 9 m/s² = 3.44 s
Time = Change in velocity divided (÷) by acceleration.
I think it would be “use reasoning statements to show how the data supports your claim”
Use the conservation of angular momentum; angular momentum at the beginning = angular momentum at the end
Conservation of angular momentum:
I1 w1 = I2 w2
Where I is the moment of inertia. For a sphere, I=2/5 m R^2. Substituting into the equation above we get
w2 = I1 w1 / I2 = w1 m1 R1^2 / (m2 R2^2)
w2 = w1 4 * (R1/R2)^2
= 4*(1)*(7E5/7.5)^2
= 3.48E10 revs/(17days)
= 2.04705882 x 10^9 revs/sec