Answer:
The most likely items to be used are;
Ultrasound and X-rays
Explanation:
A routine visit to a dentist consists of two areas of activities, including;
a) Dental examination and check up
b) Oral prophylaxis, and dental cleaning
The dental examination may involve the use of X-rays, which allow the detection of cavities between the teeth
The dental cleaning can be carried out with the use of an ultrasound cleaner, which allow the cleaning of sensitive teeth without hurting the patient
Therefore, the items most likely to be used during a routine dental visit are ultrasound and X-rays
Answer:
Explanation:
If we assume there is a sharp boundary between the two masses of air, there will be a refraction. The refractive index of each medium will depend on the relative speeds of light.
n = c / v
If light travels faster in warmer air, it will have a lower refractive index
nh < nc
Snell's law of refraction relates angles of incidence and refracted with the indexes of refraction:
n1 * sin(θ1) = n2 * sin(θ2)
sin(θ2) = sin(θ1) * n1/n2
If blue light from the sky passing through the hot air will cross to the cold air, then
n1 = nh
n2 = nc
Then:
n1 < n2
So:
n1/n2 < 1
The refracted light will come into the cold air at angle θ2 wich will be smaller than θ1, so the light is bent upwards, creating the appearance of water in the distance, which is actually a mirror image of the sky.
Answer:
The direction of electric field and equipotential line at the same point are always PERPENDICULAR TO THE ELECTRIC FIELD.
Explanation:
Equipotential surface is a three dimensional part of equipotential lines.
Equipotential lines are a type of contour lines that is use to trace lines that have the same altitude on the map and the altitude is the electric potential.
Equipotential lines are always perpendicular to electric potential because the lines creates three dimension equipotential surface.
I attached a free body diagram for a better understanding of this problem.
We start making summation of Moments in A,



Then we make a summation of Forces in Y,



At the end we calculate the angle with the sin.

