Y = mx + b
plug in the numbers.
y = 4/3 + 2
Answer:
x+3y-6=0
Step-by-step explanation:
given eqn is y=3x-2 which is 3x-y-2=0
the eqn of line perpendicular to given eqn is -x+3y+k=0
it passes through (6,4)
-6+3*4+k=0
or,. -6+12+k=0
or, k= -6
therefore, the eqn of line perpendicular to given eqn is x+3y-6=0
Answer:
13,600 
Step-by-step explanation:
(h = 7, l = 6, w = 2) 10
70, 60, 20
2(h × w) + 2(h × l) + 2(w × l)
= 2(70 × 20) + 2(70 × 60) + 2(20 × 60)
= 2(1400) + 2(4200) + 2(1200)
= 2800 + 8400 + 2400
= 13,600
Answer: Yes
Step-by-step explanation: hope it helps
First find the total payments
Total paid
200×30=6,000 (this is the future value)
Second use the formula of the future value of annuity ordinary to find the monthly payment.
The formula is
Fv=pmt [(1+r/k)^(n)-1)÷(r/k)]
We need to solve for pmt
PMT=Fv÷[(1+r/k)^(n)-1)÷(r/k)]
PMT monthly payment?
Fv future value 6000
R interest rate 0.09
K compounded monthly 12
N=kt=12×(30months/12months)=30
PMT=6000÷(((1+0.09÷12)^(30)
−1)÷(0.09÷12))
=179.09 (this is the monthly payment)
Now use the formula of the present value of annuity ordinary to find the amount of his loan.
The formula is
Pv=pmt [(1-(1+r/k)^(-n))÷(r/k)]
Pv present value or the amount of his loan?
PMT monthly payment 179.09
R interest rate 0.09
N 30
K compounded monthly 12
Pv=179.09×((1−(1+0.09÷12)^(
−30))÷(0.09÷12))
=4,795.15
The answer is 4795.15