The Earth gets hotter as one travels towards the core, known as the geothermal gradient. The geothermal gradient is the amount that the Earth's temperature increases with depth. ... On average, the temperature increases by about 25°C for every kilometer of depth.
An elastic collision is one in which the system does not experience a net loss of kinetic energy as a result of the collision. In elastic collisions, momentum and kinetic energy are both conserved.
<h3>Explain about the Elastic Collision?</h3>
A collision between two bodies in physics is referred to as an elastic collision if their combined kinetic energy stays constant. There is no net conversion of kinetic energy into other forms, such as heat, noise, or potential energy, in an ideal, fully elastic collision
An example of an elastic collision is when two balls collide at a pool table. It is an elastic collision when you throw a ball on the ground and it bounces back into your hand because there is no net change in the kinetic energy.
If there is no kinetic energy lost in the impact, the collision is said to be perfectly elastic. A collision is considered to be inelastic if any of the kinetic energy is converted to another kind of energy during the collision.
To learn more about Elastic Collision refer to:
brainly.com/question/7694106
#SPJ4
Answer: The molar heat capacity of aluminum is 
Explanation:
As we know that,
.................(1)
where,
q = heat absorbed or released
= mass of water = 130.0 g
= mass of aluminiunm = 23.5 g
= final temperature
=
= temperature of water =
= temperature of aluminium =
= specific heat of water= 
= specific heat of aluminium= ?
Now put all the given values in equation (1), we get
Molar mass of Aluminium = 27 g/mol
Thus molar heat capacity =
Answer:
Maybe
Explanation:
I say maybe because it will help them still but not quite
Answer:
Part a)
Mass of m2 is given as

Part b)
Angular acceleration is given as

Part c)
Tension in the rope is given as

Explanation:
Part a)
When m1 and m2 both connected to the cylinder then the system is at rest
so we can use torque balance here




Part b)
When block m_2 is removed then system becomes unstable
so force equation of mass m1

also we have

now we have




so angular acceleration is given as



Part c)
Tension in the rope is given as


