1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ELEN [110]
3 years ago
10

A maser is a laser-type device that produces electromagnetic waves with frequencies in the microwave and radio-wave bands of the

electromagnetic spectrum. You can use the radio waves generated by a hydrogen maser as a standard of frequency. The frequency of these waves is 1,420,405,751.786 hertz. (A hertz is another name for one cycle per second.) A clock controlled by a hydrogen maser is off by only 1 s in 100,000 years. For the following questions, use only three significant figures. (The large number of significant figures given for the frequency simply illustrates the remarkable accuracy to which it has been measured.) (a) What is the time for one cycle of the radio wave? (b) How many cycles occur in 1 h? (c) How many cycles would have occurred during the age of the earth, which is estimated to be 4.6×109 years? (d) By how many seconds would a hydrogen maser clock be off after a time interval equal to the age of the earth?By how many seconds would a hydrogen maser clock be off after a time interval equal to the age of the earth
Physics
1 answer:
rusak2 [61]3 years ago
7 0

Answers:

a) T=7.04(10)^{-10} s

b) 5.11(10)^{12} cycles

c) 2.06(10)^{26} cycles

d) 46000 s

Explanation:

<h2>a) Time for one cycle of the radio wave</h2>

We know the maser radiowave has a frequency f of 1,420,405,751.786 cycles/s

In addition we know there is an inverse relation between frequency and time T:

f=\frac{1}{T} (1)

Isolating  T: T=\frac{1}{f} (2)

T=\frac{1}{1,420,405,751.786 cycles/s} (3)

T=7.04(10)^{-10} s (4) This is the time for 1 cycle

<h2>b) Cycles that occur in 1 h</h2>

If 1h=3600s and we already know the amount of cycles per second 1,420,405,751.786 cycles/s, then:

1,420,405,751.786 \frac{cycles}{s}(3600s)=5.11(10)^{12} cycles This is the number of cycles in an hour

<h2>c) How many cycles would have occurred during the age of the earth, which is estimated to be 4.6(10)^{9} years?</h2>

Firstly, we have to convert this from years to seconds:

4.6(10)^{9} years \frac{365 days}{1 year} \frac{24 h}{1 day} \frac{3600 s}{1 h}=1.45(10)^{17} s

Now we have to multiply this value for the frequency of the maser radiowave:

1,420,405,751.786 cycles/s (1.45(10)^{17} s)=2.06(10)^{26} cycles This is the number of cycles in the age of the Earth

<h2>d) By how many seconds would a hydrogen maser clock be off after a time interval equal to the age of the earth?</h2>

If we have 1 second out for every 100,000 years, then:

4.6(10)^{9} years \frac{1 s}{100,000 years}=46000 s

This means the maser would be 46000 s off after a time interval equal to the age of the earth

You might be interested in
A spring-mass system has a spring constant of 3 Nm. A mass of 2 kg is attached to the spring, and the motion takes place in a vi
frosja888 [35]

Answer:

The answer to the question

The steady state response is u₂(t) = -\frac{3\sqrt{2} }{2}cos(3t + π/4)

of the form R·cos(ωt−δ) with R = -\frac{3\sqrt{2} }{2}, ω = 3 and δ = -π/4

Explanation:

To solve the question we note that the equation of motion is given by

m·u'' + γ·u' + k·u = F(t) where

m = mass = 2.00 kg

γ = Damping coefficient = 1

k = Spring constant = 3 N·m

F(t) = externally applied force = 27·cos(3·t)−18·sin(3·t)

Therefore we have 2·u'' + u' + 3·u = 27·cos(3·t)−18·sin(3·t)

The homogeneous equation 2·u'' + u' + 3·u is first solved as follows

2·u'' + u' + 3·u = 0 where putting the characteristic equation as

2·X² + X + 3 = 0 we have the solution given by \frac{-1+/-\sqrt{23} }{4} \sqrt{-1} =\frac{-1+/-\sqrt{23} }{4} i

This gives the general solution of the homogeneous equation as

u₁(t) = e^{(-1/4t)} (C_1cos(\frac{\sqrt{23} }{4}t) + C_2sin(\frac{\sqrt{23} }{4}t)

For a particular equation of the form 2·u''+u'+3·u = 27·cos(3·t)−18·sin(3·t) which is in the form u₂(t) = A·cos(3·t) + B·sin(3·t)

Then u₂'(t) = -3·A·sin(3·t) + 3·B·cos(3·t) also u₂''(t) = -9·A·cos(3·t) - 9·B·sin(3·t) from which  2·u₂''(t)+u₂'(t)+3·u₂(t) = (3·B-15·A)·cos(3·t) + (-3·A-15·B)·sin(3·t). Comparing with the equation 27·cos(3·t)−18·sin(3·t)  we have

3·B-15·A = 27

3·A +15·B = 18

Solving the above linear system of equations we have

A = -1.5, B = 1.5 and  u₂(t) = A·cos(3·t) + B·sin(3·t) becomes 1.5·sin(3·t) - 1.5·cos(3·t)

u₂(t) = 1.5·(sin(3·t) - cos(3·t) = -\frac{3\sqrt{2} }{2}·cos(3·t + π/4)

The general solution is then  u(t) = u₁(t) + u₂(t)

however since u₁(t) = e^{(-1/4t)} (C_1cos(\frac{\sqrt{23} }{4}t) + C_2sin(\frac{\sqrt{23} }{4}t) ⇒ 0 as t → ∞ the steady state response = u₂(t) = -\frac{3\sqrt{2} }{2}·cos(3·t + π/4) which is of the form R·cos(ωt−δ) where

R = -\frac{3\sqrt{2} }{2}

ω = 3 and

δ = -π/4

8 0
3 years ago
4. The 50-kg crate shown in Fig. rests on a horizontal surface for which the coefficient of
laila [671]

Answer:

5.057 m/s^2

Explanation:

Force of kinetic friction = .3  = F /normal force

  .3 = F /(50* 9.81)     F of friction = 147.15

Net force =   400 - 147.5  =  252.85  N

F = m * a

252.85 = 50 * a       a = 5.057 m/s^2

5 0
2 years ago
Which calculation is an example of velocity ? 10m/s 10/Ms to the right 10 m to the right 10​
stepan [7]

Answer:

10m/s to the right

5 0
3 years ago
When a pendulum is at the center position, what is true of the kinetic and potential energy?
algol13
<span>When a pendulum is at the center position ...

-- it has zero potential energy

-- if it is moving, then it has some kinetic energy

-- if it is moving, then the center position is where it has the most kinetic energy </span>
7 0
3 years ago
What are the 7 clues that a chemical change has occurred
Umnica [9.8K]

Answer:

Gas Bubbles Appear,

Formation of a Precipitate,

Color Change,

Temperature Change,

Production of Light,

Volume Change,

Change in Smell or Taste

Explanation:

8 0
3 years ago
Other questions:
  • Which unit do astronomers use for angular measurement?
    11·1 answer
  • What 2 aspects of a force do scientists measure???
    8·2 answers
  • A block–spring system vibrating on a frictionless, horizontal surface with an amplitude of 7.0 cm has an energy of 14 J. If the
    10·1 answer
  • A friend of yours who has not taken astronomy sees a meteor shower (she calls it a bunch of shooting stars). The next day she co
    8·1 answer
  • What will the pressure of gas be if the temperature rises to 87°C
    6·1 answer
  • Tony is creating a model showing how Earth rotates over the course of one day. He uses a globe to represent Earth.
    14·1 answer
  • 25 points! Please someone help me, this seems like a pretty easy question but I can’t seem to get it right, please list the give
    12·1 answer
  • Three liquids that will not mix are poured into a cylindrical container. The volumes and densities of the liquids are 0.50 L, 2.
    11·1 answer
  • yvonne van gennip of the netherlands ice skated 10.0 km with an average speed of 10.8 m/s. suppose vang ennip crosses the finish
    7·1 answer
  • An engineer is working to design a bouncy ball that conserves all of its kinetic and potential energy. She drops the ball to the
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!