1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Zielflug [23.3K]
2 years ago
15

Let

Mathematics
1 answer:
Liula [17]2 years ago
5 0

Answer:

\fbox{A  \: and  \: C  \: is  \: correct  \: answer}

Step-by-step explanation:

Given data:

\displaystyle\sf S = \sum_{k=1}^n \dfrac{n}{n^2+kn + k^2} and , \\ \displaystyle\sf T_n =\sum_{k=0}^{n-1}\dfrac{n}{n^2+kn+k^2} \\   \displaystyle\sf \: where  \: n = 1,2,3,4....

Solution:

\displaystyle\sf S_n = \sum_{k=1}^n \dfrac{n}{n^2+kn + k^2}  \\ \displaystyle\sf S_n < \lim_{n\to\infty}S_n  \\ \displaystyle\sf \:  Taking \:  common  \:  \rightarrow \frac{n}{ {n}^{2} }  \\  \displaystyle\sf S_n < \lim_{n\to\infty}\sum_{k=1}^n \dfrac{n}{n^2+kn + k^2}  \\ \displaystyle\sf S_n < \lim_{n\to\infty}\sum_{k=1}^n \dfrac{1}{1+ \frac{k}{n}  +  (\frac{k}{n}) ^2}  \cdot   \frac{ \not n}{\not {n}^{2} }_n \\ \displaystyle\sf S_n < \frac{1}{n}  \lim_{n\to\infty}\sum_{k=1}^n \dfrac{1}{1+ \frac{k}{n}  +  (\frac{k}{n}) ^2}  \\  \displaystyle\sf

\: Assume \rightarrow  \frac{k}{n}  = x \\ \displaystyle\sf \: S_n < \frac{1}{n}  \lim_{n\to\infty}\sum_{k=1}^n \dfrac{1}{1+ x  +  x ^2} \\ \displaystyle\sf  Rewriting  \rightarrow (1+x+ {x}^{2})  \: as \: {(x +  \frac{1}{2})}^{2}  + {( \frac{ \sqrt{3} }{2} )}^{2} \\ \displaystyle\sf \: S_n < \frac{1}{n}  \lim_{n\to\infty}\sum_{k=1}^n \dfrac{1}{{(x +  \frac{1}{2})}^{2}  + {( \frac{ \sqrt{3} }{2} )}^{2}} \\ \displaystyle\sf \frac{k}{n} \:  = x \rightarrow \: \frac{1}{n} \:  = dx \\ \displaystyle\sf  \: S_n <  \int_0^1 \dfrac{1}{{(x +  \frac{1}{2})}^{2}  + {( \frac{ \sqrt{3} }{2} )}^{2}} \cdot \: dx

We know that,

\displaystyle\sf \:  \int \:  \frac{1}{ {x}^{2}  +  {a}^{2} }  =  \frac{1}{a}  {tan}^{ - 1} ( \frac{x}{a} ) + c

Applying this formula to above step,

\displaystyle\sf  \: S_n < \large \frac{1}{ \frac{ \sqrt{3} }{2} }  \cdot \:  {tan}^{ - 1} ( \frac{ \frac{2x + 1}{\not2} }{ \frac{ \sqrt{3} }{\not2} } ) \\ \displaystyle\sf  \: S_n < \large  | \frac{2}{ { \sqrt{3} }}  \cdot \:  {tan}^{ - 1} ( { \frac{2x + 1}{ \sqrt{3} }})| _0^1 \\

\displaystyle\sf  \: S_n < \large   \frac{2}{ { \sqrt{3} }}  \cdot \:  {tan}^{ - 1} ( { \frac{2 \times 1 + 1}{ \sqrt{3} }}) - {tan}^{ - 1} ( { \frac{2 \times 0 + 1}{ \sqrt{3} }}) \\ \displaystyle\sf  \: S_n < \large   \frac{2}{ { \sqrt{3} }}  \cdot \:  {tan}^{ - 1} ( { \frac{\sqrt{3}}{ 1 }}) - {tan}^{ - 1} ( {  \frac{ 1}{ \sqrt{3} }}) \\ \displaystyle\sf  \: S_n < \large   \frac{2}{ { \sqrt{3} }}  \cdot \:  ( \frac{ \pi}{3}  - \frac{ \pi}{6} ) \\ \displaystyle\sf  \: S_n < \large   \frac{\not2}{ { \sqrt{3} }}  \cdot \:  (\frac{ \pi}{\not6} ) \\ \\  \displaystyle\sf  \: S_n < \large   \frac{ \pi}{3 \sqrt{3} }

We must be knowing that,

\displaystyle\sf \:h \sum_{k=0}^{n - 1} \:  \frac{k}{n}  > \int_0^1 \: f(x)dx \:  > h \sum_{k=1}^n \:  \frac{k}{n}

Similarly we can solve for Tn,

\displaystyle\sf T_n =\sum_{k=0}^{n-1}\dfrac{n}{n^2+kn+k^2} \\  \\ \displaystyle\sf T_n > \lim_{n\to\infty}T_n   \\ \displaystyle\sf T_n > \lim_{n\to\infty}\sum_{k=0}^{n - 1} \dfrac{n}{n^2+kn + k^2}  \\ \displaystyle\sf \:  Taking \:  common  \:  \rightarrow \frac{n}{ {n}^{2} }  \\ \displaystyle\sf T_n > \lim_{n\to\infty}\sum_{k=0}^{n - 1}  \dfrac{1}{1+ \frac{k}{n}  +  (\frac{k}{n}) ^2}  \cdot   \frac{ \not n}{\not {n}^{2} }_n \\ \displaystyle\sf T_n > \frac{1}{n}  \lim_{n\to\infty}\sum_{k=0}^{n - 1} \dfrac{1}{1+ \frac{k}{n}  +  (\frac{k}{n}) ^2}  \\

Assume K/n = x,

\displaystyle\sf \: T_n > \frac{1}{n}  \lim_{n\to\infty}\sum_{k=0}^{n - 1} \dfrac{1}{1+ x  +  x ^2} \\ \displaystyle\sf  Rewriting  \rightarrow (1+x+ {x}^{2})  \: as \: {(x +  \frac{1}{2})}^{2}  + {( \frac{ \sqrt{3} }{2} )}^{2} \\ \displaystyle\sf \: T_n > \frac{1}{n}  \lim_{n\to\infty}\sum_{k=0}^{n - 1} \dfrac{1}{{(x +  \frac{1}{2})}^{2}  + {( \frac{ \sqrt{3} }{2} )}^{2}} \\\displaystyle\sf \frac{k}{n} \:  = x \rightarrow \: \frac{1}{n} \:  = dx \\ \displaystyle\sf  \: T_n >  \int_0^1 \dfrac{1}{{(x +  \frac{1}{2})}^{2}  + {( \frac{ \sqrt{3} }{2} )}^{2}} \cdot \: dx

Now we know that,

\displaystyle\sf \:  \int \:  \frac{1}{ {x}^{2}  +  {a}^{2} }  =  \frac{1}{a}  {tan}^{ - 1} ( \frac{x}{a} ) + c \\ \displaystyle\sf applying \: this \: formula \: to \: above \: step

\\ \displaystyle\sf  \: T_n > \large \frac{1}{ \frac{ \sqrt{3} }{2} }  \cdot \:  {tan}^{ - 1} ( \frac{ \frac{2x + 1}{\not2} }{ \frac{ \sqrt{3} }{\not2} } ) \\ \displaystyle\sf  \: T_n > \large  | \frac{2}{ { \sqrt{3} }}  \cdot \:  {tan}^{ - 1} ( { \frac{2x + 1}{ \sqrt{3} }})| _0^1 \\ \displaystyle\sf  \: T_n > \large   \frac{2}{ { \sqrt{3} }}  \cdot \:  {tan}^{ - 1} ( { \frac{2 \times 1 + 1}{ \sqrt{3} }}) - {tan}^{ - 1} ( { \frac{2 \times 0 + 1}{ \sqrt{3} }}) \\ \displaystyle\sf  \: T_n > \large   \frac{2}{ { \sqrt{3} }}  \cdot \:  {tan}^{ - 1} ( { \frac{\sqrt{3}}{ 1 }}) - {tan}^{ - 1} ( {  \frac{ 1}{ \sqrt{3} }}) \\ \displaystyle\sf  \: T_n > \large   \frac{2}{ { \sqrt{3} }}  \cdot \:  ( \frac{ \pi}{3}  - \frac{ \pi}{6} ) \\ \displaystyle\sf  \: T_n > \large   \frac{\not2}{ { \sqrt{3} }}  \cdot \:  (\frac{ \pi}{\not6} ) \\  \\  \displaystyle\sf  \: T_n > \large   \frac{ \pi}{3 \sqrt{3} }

<em>This is the final answer!</em>

<em>Thanks </em><em>for </em><em>joining</em><em> brainly</em><em> community</em><em>!</em>

You might be interested in
4123 to the nearest thousands​
noname [10]

Answer:

4000

Step-by-step explanation:

if 5 or up you round up if under five you round down and after the number you rounded add  0

3 0
3 years ago
8. Solve the system using elimination.<br> 3x - 4y = 9<br> - 3x + 2y = 9
olga nikolaevna [1]

Answer:

3x−4y=9 −3x+2y=9

Add these equations to eliminate x: −2y=18

Then solve−2y=18

for y: −2y=18 −2y −2 = 18 −2 (Divide both sides by -2)

y=−9

Now that we've found y let's plug it back in to solve for x.

Write down an original equation: 3x−4y=9

Substitute−9for y in 3x−4y=9: 3x−(4)(−9)=9

3x+36=9(Simplify both sides of the equation)

3x+36+−36=9+−36(Add -36 to both sides)

3x=−27 3x 3 = −27 3 (Divide both sides by 3) x=−9

Answer: x=−9 and y=−9

Hope This Helps!!!

4 0
3 years ago
2. Dakota's hourly salary is $12. If Dakota
kupik [55]
I think the answer is $48
7 0
3 years ago
Read 2 more answers
The two cones below are similar. What is the value of x?
ipn [44]
The answer is c have a good day
8 0
3 years ago
Convert 27^ 2/3 into radical form.
-Dominant- [34]

Answer:

243

Step-by-step explanation:

Simplify

27^2 / 3

729 divided by 3

= 243

7 0
2 years ago
Other questions:
  • Scissors come in packages of 3. Glue sticks come.in packages of 10 Martha wants to buy the same number of each . what is the few
    10·2 answers
  • 2 divided by 4/5 whats the answer to this problem anyone?
    7·2 answers
  • Choose the kind(s) of symmetry. (Select all that apply.)
    11·2 answers
  • Pleeaaassseee I need help in this , algebraic expressions​
    7·1 answer
  • Find the value of x in the triangle shown below
    10·1 answer
  • I need help with this question, it is for geometry ​
    14·1 answer
  • Solve lxl + 7 &lt; 4.<br> {x l x &lt; -11 or x &gt; -3)<br> {x 1-3
    6·1 answer
  • Jayla's bank account increased by 7% this year. Write an equation to represent the relationship between the amount that Jayla st
    10·1 answer
  • The elimination method is ideal for solving this system of equations. By which number must you multiply the second equation to e
    13·2 answers
  • The sum of m and n is 32, and the value of m is three times the value of n. what is the value of m and n?
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!