1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Zielflug [23.3K]
2 years ago
15

Let

Mathematics
1 answer:
Liula [17]2 years ago
5 0

Answer:

\fbox{A  \: and  \: C  \: is  \: correct  \: answer}

Step-by-step explanation:

Given data:

\displaystyle\sf S = \sum_{k=1}^n \dfrac{n}{n^2+kn + k^2} and , \\ \displaystyle\sf T_n =\sum_{k=0}^{n-1}\dfrac{n}{n^2+kn+k^2} \\   \displaystyle\sf \: where  \: n = 1,2,3,4....

Solution:

\displaystyle\sf S_n = \sum_{k=1}^n \dfrac{n}{n^2+kn + k^2}  \\ \displaystyle\sf S_n < \lim_{n\to\infty}S_n  \\ \displaystyle\sf \:  Taking \:  common  \:  \rightarrow \frac{n}{ {n}^{2} }  \\  \displaystyle\sf S_n < \lim_{n\to\infty}\sum_{k=1}^n \dfrac{n}{n^2+kn + k^2}  \\ \displaystyle\sf S_n < \lim_{n\to\infty}\sum_{k=1}^n \dfrac{1}{1+ \frac{k}{n}  +  (\frac{k}{n}) ^2}  \cdot   \frac{ \not n}{\not {n}^{2} }_n \\ \displaystyle\sf S_n < \frac{1}{n}  \lim_{n\to\infty}\sum_{k=1}^n \dfrac{1}{1+ \frac{k}{n}  +  (\frac{k}{n}) ^2}  \\  \displaystyle\sf

\: Assume \rightarrow  \frac{k}{n}  = x \\ \displaystyle\sf \: S_n < \frac{1}{n}  \lim_{n\to\infty}\sum_{k=1}^n \dfrac{1}{1+ x  +  x ^2} \\ \displaystyle\sf  Rewriting  \rightarrow (1+x+ {x}^{2})  \: as \: {(x +  \frac{1}{2})}^{2}  + {( \frac{ \sqrt{3} }{2} )}^{2} \\ \displaystyle\sf \: S_n < \frac{1}{n}  \lim_{n\to\infty}\sum_{k=1}^n \dfrac{1}{{(x +  \frac{1}{2})}^{2}  + {( \frac{ \sqrt{3} }{2} )}^{2}} \\ \displaystyle\sf \frac{k}{n} \:  = x \rightarrow \: \frac{1}{n} \:  = dx \\ \displaystyle\sf  \: S_n <  \int_0^1 \dfrac{1}{{(x +  \frac{1}{2})}^{2}  + {( \frac{ \sqrt{3} }{2} )}^{2}} \cdot \: dx

We know that,

\displaystyle\sf \:  \int \:  \frac{1}{ {x}^{2}  +  {a}^{2} }  =  \frac{1}{a}  {tan}^{ - 1} ( \frac{x}{a} ) + c

Applying this formula to above step,

\displaystyle\sf  \: S_n < \large \frac{1}{ \frac{ \sqrt{3} }{2} }  \cdot \:  {tan}^{ - 1} ( \frac{ \frac{2x + 1}{\not2} }{ \frac{ \sqrt{3} }{\not2} } ) \\ \displaystyle\sf  \: S_n < \large  | \frac{2}{ { \sqrt{3} }}  \cdot \:  {tan}^{ - 1} ( { \frac{2x + 1}{ \sqrt{3} }})| _0^1 \\

\displaystyle\sf  \: S_n < \large   \frac{2}{ { \sqrt{3} }}  \cdot \:  {tan}^{ - 1} ( { \frac{2 \times 1 + 1}{ \sqrt{3} }}) - {tan}^{ - 1} ( { \frac{2 \times 0 + 1}{ \sqrt{3} }}) \\ \displaystyle\sf  \: S_n < \large   \frac{2}{ { \sqrt{3} }}  \cdot \:  {tan}^{ - 1} ( { \frac{\sqrt{3}}{ 1 }}) - {tan}^{ - 1} ( {  \frac{ 1}{ \sqrt{3} }}) \\ \displaystyle\sf  \: S_n < \large   \frac{2}{ { \sqrt{3} }}  \cdot \:  ( \frac{ \pi}{3}  - \frac{ \pi}{6} ) \\ \displaystyle\sf  \: S_n < \large   \frac{\not2}{ { \sqrt{3} }}  \cdot \:  (\frac{ \pi}{\not6} ) \\ \\  \displaystyle\sf  \: S_n < \large   \frac{ \pi}{3 \sqrt{3} }

We must be knowing that,

\displaystyle\sf \:h \sum_{k=0}^{n - 1} \:  \frac{k}{n}  > \int_0^1 \: f(x)dx \:  > h \sum_{k=1}^n \:  \frac{k}{n}

Similarly we can solve for Tn,

\displaystyle\sf T_n =\sum_{k=0}^{n-1}\dfrac{n}{n^2+kn+k^2} \\  \\ \displaystyle\sf T_n > \lim_{n\to\infty}T_n   \\ \displaystyle\sf T_n > \lim_{n\to\infty}\sum_{k=0}^{n - 1} \dfrac{n}{n^2+kn + k^2}  \\ \displaystyle\sf \:  Taking \:  common  \:  \rightarrow \frac{n}{ {n}^{2} }  \\ \displaystyle\sf T_n > \lim_{n\to\infty}\sum_{k=0}^{n - 1}  \dfrac{1}{1+ \frac{k}{n}  +  (\frac{k}{n}) ^2}  \cdot   \frac{ \not n}{\not {n}^{2} }_n \\ \displaystyle\sf T_n > \frac{1}{n}  \lim_{n\to\infty}\sum_{k=0}^{n - 1} \dfrac{1}{1+ \frac{k}{n}  +  (\frac{k}{n}) ^2}  \\

Assume K/n = x,

\displaystyle\sf \: T_n > \frac{1}{n}  \lim_{n\to\infty}\sum_{k=0}^{n - 1} \dfrac{1}{1+ x  +  x ^2} \\ \displaystyle\sf  Rewriting  \rightarrow (1+x+ {x}^{2})  \: as \: {(x +  \frac{1}{2})}^{2}  + {( \frac{ \sqrt{3} }{2} )}^{2} \\ \displaystyle\sf \: T_n > \frac{1}{n}  \lim_{n\to\infty}\sum_{k=0}^{n - 1} \dfrac{1}{{(x +  \frac{1}{2})}^{2}  + {( \frac{ \sqrt{3} }{2} )}^{2}} \\\displaystyle\sf \frac{k}{n} \:  = x \rightarrow \: \frac{1}{n} \:  = dx \\ \displaystyle\sf  \: T_n >  \int_0^1 \dfrac{1}{{(x +  \frac{1}{2})}^{2}  + {( \frac{ \sqrt{3} }{2} )}^{2}} \cdot \: dx

Now we know that,

\displaystyle\sf \:  \int \:  \frac{1}{ {x}^{2}  +  {a}^{2} }  =  \frac{1}{a}  {tan}^{ - 1} ( \frac{x}{a} ) + c \\ \displaystyle\sf applying \: this \: formula \: to \: above \: step

\\ \displaystyle\sf  \: T_n > \large \frac{1}{ \frac{ \sqrt{3} }{2} }  \cdot \:  {tan}^{ - 1} ( \frac{ \frac{2x + 1}{\not2} }{ \frac{ \sqrt{3} }{\not2} } ) \\ \displaystyle\sf  \: T_n > \large  | \frac{2}{ { \sqrt{3} }}  \cdot \:  {tan}^{ - 1} ( { \frac{2x + 1}{ \sqrt{3} }})| _0^1 \\ \displaystyle\sf  \: T_n > \large   \frac{2}{ { \sqrt{3} }}  \cdot \:  {tan}^{ - 1} ( { \frac{2 \times 1 + 1}{ \sqrt{3} }}) - {tan}^{ - 1} ( { \frac{2 \times 0 + 1}{ \sqrt{3} }}) \\ \displaystyle\sf  \: T_n > \large   \frac{2}{ { \sqrt{3} }}  \cdot \:  {tan}^{ - 1} ( { \frac{\sqrt{3}}{ 1 }}) - {tan}^{ - 1} ( {  \frac{ 1}{ \sqrt{3} }}) \\ \displaystyle\sf  \: T_n > \large   \frac{2}{ { \sqrt{3} }}  \cdot \:  ( \frac{ \pi}{3}  - \frac{ \pi}{6} ) \\ \displaystyle\sf  \: T_n > \large   \frac{\not2}{ { \sqrt{3} }}  \cdot \:  (\frac{ \pi}{\not6} ) \\  \\  \displaystyle\sf  \: T_n > \large   \frac{ \pi}{3 \sqrt{3} }

<em>This is the final answer!</em>

<em>Thanks </em><em>for </em><em>joining</em><em> brainly</em><em> community</em><em>!</em>

You might be interested in
In triangle ABC, AC =24, the measure of angle A = 30 degree , and the measure of angle B = 45 degree . Find the area of this tri
andriy [413]

Answer:

142.932

Step-by-step explanation:

given that in triangle ABC, AC =24

Angle A = 30 and Angle B =45

If we draw altitude from C, we get

h = 24sin 30 = 12

Since BC = h (45, 45,90 triangle)

BC=12

By sine formula for triangle

\frac{12}{sin30} =\frac{AB}{sin(180-45-30)} \\AB = 24 sin 105 = 23.1822

Area of triangle

= 1/2 (23.1822)(12)\\= 142.932

6 0
4 years ago
A = 1/2 bh solve for h
Elanso [62]
H=A/0.5b isolate h
h=2A/b Make all terms integers (optional)
6 0
3 years ago
The scatter plot below shows the relationship between the outside temperature and the number of cups of hot chocolate sold at an
Alenkasestr [34]

Answer:

B

Step-by-step explanation:

6 0
3 years ago
Riley is building a garden box for his backyard. He wants the perimeter to be 32
babunello [35]
The length of the garden box would be 10ft if the width is 6ft.
7 0
4 years ago
One angle of a right triangle measures 10°. What is the measure of the other acute angle?
Andrei [34K]

Answer:

80 degrees

Step-by-step explanation:

Do 90 plus 10.

The do 180 minus 100

because a triangle adds up to 180

5 0
4 years ago
Read 2 more answers
Other questions:
  • What are the first four terms for the Power Series y = 5x - 1 / x2 - x - 2?
    13·2 answers
  • In the figure, point B is the midpoint of AC. Use the figure to answer the questions.
    12·1 answer
  • Please &amp; thankssssss
    8·1 answer
  • Which of these expressions are equivalent to the expression below. CHOOSE 2. *
    15·1 answer
  • a spinner is divided into five different size sections, each a different color. what is the probability of the spinner landing o
    6·1 answer
  • A line PQ passes through the points (-8, -1) and (-2, 3). The equation of line RS is -2y -3x =13. Is the line PQ parallel to RS?
    7·1 answer
  • Subtract. (5r2+5r+9)–(3r+2)
    10·1 answer
  • What is the value of f(4), if f(x) = 2x - 16?
    10·2 answers
  • A cereal box is an example of a
    7·1 answer
  • In ΔTUV, v = 240 inches, t = 390 inches and ∠U=71°. Find the area of ΔTUV, to the nearest square inch.
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!