Prime factorization involves rewriting numbers as products
The HCF and the LCM of 1848, 132 and 462 are 66 and 1848 respectively
<h3>How to determine the HCF</h3>
The numbers are given as: 1848, 132 and 462
Using prime factorization, the numbers can be rewritten as:



The HCF is the product of the highest factors
So, the HCF is:


<h3>How to determine the LCM</h3>
In (a), we have:



So, the LCM is:


Hence, the HCF and the LCM of 1848, 132 and 462 are 66 and 1848 respectively
Read more about prime factorization at:
brainly.com/question/9523814