Hello, we need to solve this system, c being a real number.
![\begin{cases}y &= 3x^2-5x\\y &= 2x^2-x-c\end{cases}](https://tex.z-dn.net/?f=%5Cbegin%7Bcases%7Dy%20%26%3D%203x%5E2-5x%5C%5Cy%20%26%3D%202x%5E2-x-c%5Cend%7Bcases%7D)
y=y, right? So, it comes.
![3x^2-5x=2x^2-x-c\\\\3x^2-2x^2-5x+x+c=0\\\\\boxed{x^2-4x+c=0}](https://tex.z-dn.net/?f=3x%5E2-5x%3D2x%5E2-x-c%5C%5C%5C%5C3x%5E2-2x%5E2-5x%2Bx%2Bc%3D0%5C%5C%5C%5C%5Cboxed%7Bx%5E2-4x%2Bc%3D0%7D)
We can compute the discriminant.
![\Delta=b^2-4ac=4^2-4c=4(4-c)](https://tex.z-dn.net/?f=%5CDelta%3Db%5E2-4ac%3D4%5E2-4c%3D4%284-c%29)
If the discriminant is 0, there is 1 solution.
It means for ![4(4-c)=0 4-c=0 \boxed{c=4}](https://tex.z-dn.net/?f=4%284-c%29%3D0%20%3C%3D%3E%204-c%3D0%20%3C%3D%3E%20%5Cboxed%7Bc%3D4%7D)
And the solution is
![x_2=x_1=\dfrac{4}{2}=2](https://tex.z-dn.net/?f=x_2%3Dx_1%3D%5Cdfrac%7B4%7D%7B2%7D%3D2)
If the discriminant is > 0, there are 2 real solutions.
It means 4(4-c) > 0 <=> 4-c > 0 <=> ![\boxed{c](https://tex.z-dn.net/?f=%5Cboxed%7Bc%3C4%7D)
And the solution are
![x_1=\dfrac{4-\sqrt{4(4-c)}}{2}=\dfrac{4-2\sqrt{4-c}}{2}=2-\sqrt{4-c}\\\\x_2=2+\sqrt{4-c}](https://tex.z-dn.net/?f=x_1%3D%5Cdfrac%7B4-%5Csqrt%7B4%284-c%29%7D%7D%7B2%7D%3D%5Cdfrac%7B4-2%5Csqrt%7B4-c%7D%7D%7B2%7D%3D2-%5Csqrt%7B4-c%7D%5C%5C%5C%5Cx_2%3D2%2B%5Csqrt%7B4-c%7D)
If the discriminant is < 0, there are no real solutions.
It means 4(4-c) < 0 <=> 4-c < 0 <=> ![\boxed{c>4}](https://tex.z-dn.net/?f=%5Cboxed%7Bc%3E4%7D)
There are no real solutions and the complex solutions are
![x_1=\dfrac{4-\sqrt{4(4-c)}}{2}=\dfrac{4-2\sqrt{i^2(c-4)}}{2}=2-\sqrt{c-4}\cdot i\\\\x_2=2+\sqrt{c-4}\cdot i](https://tex.z-dn.net/?f=x_1%3D%5Cdfrac%7B4-%5Csqrt%7B4%284-c%29%7D%7D%7B2%7D%3D%5Cdfrac%7B4-2%5Csqrt%7Bi%5E2%28c-4%29%7D%7D%7B2%7D%3D2-%5Csqrt%7Bc-4%7D%5Ccdot%20i%5C%5C%5C%5Cx_2%3D2%2B%5Csqrt%7Bc-4%7D%5Ccdot%20i)
Thank you.