1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ugo [173]
2 years ago
8

Use the quadratic formula to solve. Round to the nearest tenth if necessary. 2x^2 -3x -7 = 0

Mathematics
1 answer:
abruzzese [7]2 years ago
8 0

The quadratic formula is:

\frac{-b + \sqrt{b^2 - 4ac} }{2a} and  \frac{-b - \sqrt{b^2 - 4ac} }{2a}

In this case, a = 2, b = -3, and c = -7

So, we can plug in the numbers to get:

  \frac{-(-3) + \sqrt{(-3)^2 - 4(2)(-7)} }{2(2)} and    \frac{-(-3) - \sqrt{(-3)^2 - 4(2)(-7)} }{2(2)}

Simplifying, we get:

    \frac{3 + \sqrt{65} }{4} and   \frac{3 - \sqrt{65} }{4}

You need to use a calculator to find what these would be in decimal form. The answer, rounded to the nearest tenth, is: x = 2.8, x = -1.3

You might be interested in
A surveyer wants to find the distance from points A and B and to an inaccessible point C. These three points form a triangle. Be
Vinil7 [7]

Answer:

42.8°

Step-by-step explanation:

The sine rule states that for a triangle with lengths of a, b and c and the corresponding angles which are opposite the sides as A, B and C, then the following rule holds:

\frac{a}{sin(A)}=\frac{b}{sin(B)}  =\frac{c}{sin(C)}

Given that points A, B and C forms a triangle with angle A = 65°, distance from A-to-C = 90 m and the distance from B to C = 120 m.

The distance from A to C is the side opposite to angle B. Hence let b =  distance from A to C = 90 m.

The distance from B to C is the side opposite to angle A. Hence let a =  distance from B to C = 120 m.

Therefore using sine rule:

\frac{a}{sin(A)}=\frac{b}{sin(B)}  \\\\\frac{120}{sin(65)}=\frac{90}{sin(B)}  \\\\sin(B)=\frac{90*sin(65)}{120} \\\\sin(B) =0.6797\\\\B=sin^{-1}(0.6797)\\\\B=42.8^o

7 0
2 years ago
HELP ASAP ILL GIVE BRAINLYIST
Ratling [72]

Answer:

################

Step-by-step explanation:

6 0
3 years ago
Can you guys help me answer it
Hitman42 [59]

Answer:

300pi

Step-by-step explanation:

that is 3/4 of a circle with the radius of 20. Meaning that the area is 300pi

8 0
2 years ago
If 5 people receive 8 brownies, what is the fraction form of how many brownies each person will equally receive
Rufina [12.5K]
8 brownies divided by 5 people=8/5=1 3/5
8 0
2 years ago
The following functions give the populations of four towns with time tt in years.
expeople1 [14]

Solution :

Transforming given equations :

1)\ P = 600( 1 + \dfrac{12}{100})^t\\\\2)\ P = 1000( 1 + \dfrac{3}{100})^t\\\\3)\ P = 200( 1 + \dfrac{8}{100})^t\\\\4)\ P = 900( 1 - \dfrac{10}{100})^t

From above equations we can see that equation 1) has largest percentage growth rate and the percent growth rate is 12% .

Hence, this is the required solution.

6 0
3 years ago
Read 2 more answers
Other questions:
  • When a number is decreased by 54%, the result is 28. What is the original number to
    12·1 answer
  • Cylinder A has a radius of 2 inches and a height of 2 inches. Cylinder B has a radius of 2 inches and a height of 4 inches. Calc
    5·1 answer
  • The last questionHelphelphelphelphelphelphelphelphelphelphelphelp
    12·1 answer
  • Simplify 8x + 10y + 9x - 3y by identifying and combining like terms. A. 17x + 13y B.24y C.17x+7 D.17x + 7y
    10·2 answers
  • For a wedding the bride must select 4 bridesmaids from her 6 closest friends and must arrange them in order for the ceremony. Ho
    10·1 answer
  • 16+2b-7b subtracting like terms
    11·2 answers
  • Solve for square root of y=0.5
    9·1 answer
  • A humanities professor assigns letter grades on a test according to the following scheme. A: Top 13% of scores B: Scores below t
    13·1 answer
  • PLEASE I NEED HELP ASAP THANK YOU :) <3
    6·1 answer
  • If Dominik completes a project by himself, it will take him 8 hours. Working with Katarina, it will take them 5 hours.
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!