1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Lena [83]
2 years ago
9

Write an 27, 31, 35, .... explicit formula for an, the n th term of the sequence​

Mathematics
1 answer:
Andrei [34K]2 years ago
8 0

Answer :

See below ~

Explanation :

  • Common difference (d) between terms is :
  • 31 - 27 = 4

Then the recursive formula is :

  • <u>aₙ = aₙ₋₁ + 4</u>
You might be interested in
If x=0. Find the value of 8x-2(6-x)
Harrizon [31]

Answer:

-12

Step-by-step explanation:

8x - 2(6 - x)

Substitute 0 for each x

8*0 - 2(6 - 0)

Solve.

0 - 2*6

0 - 12

-12

7 0
3 years ago
Read 2 more answers
What is the quotient of 2 1/5 ÷ 6 3/5 <br><br>A. 1/3<br><br>B. 3/4<br><br>C. 24/35<br><br>D. 2/3​
zepelin [54]

Answer:

A.1/3

Step-by-step explanation:

on the picture

if it's helpful ❤❤❤

THANK YOU.

7 0
3 years ago
Luke has $21 more than Rachel and $48 more than Daniel. All together they have $
KengaRu [80]
This can be solve by 3 variable equation
let x be the money of luke
y money of rachel
z money of daniel
first equation
x = y + 21
second equation
x = z + 48
third equation
x + y + z = 168
solving simultaneously
x =79
y = 58
z = 31

3 0
4 years ago
I need help with this question for today please help me I really need help in this
igor_vitrenko [27]

Answer:

The answer is the second answer choice

Step-by-step explanation:

3 0
3 years ago
Particle P moves along the y-axis so that its position at time t is given by y(t)=4t−23 for all times t. A second particle, part
sergey [27]

a) The limit of the position of particle Q when time approaches 2 is -\pi.

b) The velocity of particle Q is v_{Q}(t) = \frac{2\pi\cdot \cos \pi t-\pi\cdot t \cdot \cos \pi t -\sin \pi t}{(2-t)^{2}} for all t \ne 2.

c) The rate of change of the distance between particle P and particle Q at time t = \frac{1}{2} is \frac{4\sqrt{82}}{9}.

<h3>How to apply limits and derivatives to the study of particle motion</h3>

a) To determine the limit for t = 2, we need to apply the following two <em>algebraic</em> substitutions:

u = \pi t (1)

k = 2\pi - u (2)

Then, the limit is written as follows:

x(t) =  \lim_{t \to 2} \frac{\sin \pi t}{2-t}

x(t) =  \lim_{t \to 2} \frac{\pi\cdot \sin \pi t}{2\pi - \pi t}

x(u) =  \lim_{u \to 2\pi} \frac{\pi\cdot \sin u}{2\pi - u}

x(k) =  \lim_{k \to 0} \frac{\pi\cdot \sin (2\pi-k)}{k}

x(k) =  -\pi\cdot  \lim_{k \to 0} \frac{\sin k}{k}

x(k) = -\pi

The limit of the position of particle Q when time approaches 2 is -\pi. \blacksquare

b) The function velocity of particle Q is determined by the <em>derivative</em> formula for the division between two functions, that is:

v_{Q}(t) = \frac{f'(t)\cdot g(t)-f(t)\cdot g'(t)}{g(t)^{2}} (3)

Where:

  • f(t) - Function numerator.
  • g(t) - Function denominator.
  • f'(t) - First derivative of the function numerator.
  • g'(x) - First derivative of the function denominator.

If we know that f(t) = \sin \pi t, g(t) = 2 - t, f'(t) = \pi \cdot \cos \pi t and g'(x) = -1, then the function velocity of the particle is:

v_{Q}(t) = \frac{\pi \cdot \cos \pi t \cdot (2-t)-\sin \pi t}{(2-t)^{2}}

v_{Q}(t) = \frac{2\pi\cdot \cos \pi t-\pi\cdot t \cdot \cos \pi t -\sin \pi t}{(2-t)^{2}}

The velocity of particle Q is v_{Q}(t) = \frac{2\pi\cdot \cos \pi t-\pi\cdot t \cdot \cos \pi t -\sin \pi t}{(2-t)^{2}} for all t \ne 2. \blacksquare

c) The vector <em>rate of change</em> of the distance between particle P and particle Q (\dot r_{Q/P} (t)) is equal to the <em>vectorial</em> difference between respective vectors <em>velocity</em>:

\dot r_{Q/P}(t) = \vec v_{Q}(t) - \vec v_{P}(t) (4)

Where \vec v_{P}(t) is the vector <em>velocity</em> of particle P.

If we know that \vec v_{P}(t) = (0, 4), \vec v_{Q}(t) = \left(\frac{2\pi\cdot \cos \pi t - \pi\cdot t \cdot \cos \pi t + \sin \pi t}{(2-t)^{2}}, 0 \right) and t = \frac{1}{2}, then the vector rate of change of the distance between the two particles:

\dot r_{P/Q}(t) = \left(\frac{2\pi \cdot \cos \pi t - \pi\cdot t \cdot \cos \pi t + \sin \pi t}{(2-t)^{2}}, -4 \right)

\dot r_{Q/P}\left(\frac{1}{2} \right) = \left(\frac{2\pi\cdot \cos \frac{\pi}{2}-\frac{\pi}{2}\cdot \cos \frac{\pi}{2} +\sin \frac{\pi}{2}}{\frac{3}{2} ^{2}}, -4 \right)

\dot r_{Q/P} \left(\frac{1}{2} \right) = \left(\frac{4}{9}, -4 \right)

The magnitude of the vector <em>rate of change</em> is determined by Pythagorean theorem:

|\dot r_{Q/P}| = \sqrt{\left(\frac{4}{9} \right)^{2}+(-4)^{2}}

|\dot r_{Q/P}| = \frac{4\sqrt{82}}{9}

The rate of change of the distance between particle P and particle Q at time t = \frac{1}{2} is \frac{4\sqrt{82}}{9}. \blacksquare

<h3>Remark</h3>

The statement is incomplete and poorly formatted. Correct form is shown below:

<em>Particle </em>P<em> moves along the y-axis so that its position at time </em>t<em> is given by </em>y(t) = 4\cdot t - 23<em> for all times </em>t<em>. A second particle, </em>Q<em>, moves along the x-axis so that its position at time </em>t<em> is given by </em>x(t) = \frac{\sin \pi t}{2-t}<em> for all times </em>t \ne 2<em>. </em>

<em />

<em>a)</em><em> As times approaches 2, what is the limit of the position of particle </em>Q?<em> Show the work that leads to your answer. </em>

<em />

<em>b) </em><em>Show that the velocity of particle </em>Q<em> is given by </em>v_{Q}(t) = \frac{2\pi\cdot \cos \pi t-\pi\cdot t \cdot \cos \pi t +\sin \pi t}{(2-t)^{2}}<em>.</em>

<em />

<em>c)</em><em> Find the rate of change of the distance between particle </em>P<em> and particle </em>Q<em> at time </em>t = \frac{1}{2}<em>. Show the work that leads to your answer.</em>

To learn more on derivatives, we kindly invite to check this verified question: brainly.com/question/2788760

3 0
2 years ago
Other questions:
  • Can someone help me ASP.
    8·2 answers
  • The highest point in California is Mount Whitney at 14,494 feet above sea level. The lowest point is the Death Valley at 282 fee
    14·2 answers
  • NEED ANSWER TODAY PLZ!!<br><br> A. -3<br> B. -4<br> C. -1 and 0.75<br> D. 1
    11·2 answers
  • Find a formula for the described function. an open rectangular box with volume 9 m3 has a square base. express the surface area
    10·1 answer
  • The set M represents multiples of 4 from 6 to 38. M=8,12,16,20,24,28,32,36 The set N represents even numbers from 4 to 13. N=4,6
    11·1 answer
  • Factor 3h2 – 11h - 42
    6·2 answers
  • Find the sum of the measures of the interior angles in the figure.
    12·1 answer
  • {12,16,5,2} the number of subsets
    10·1 answer
  • Find the common difference of the arithmetic sequence 13,10,7
    14·1 answer
  • How many photos in the shape of a parallelogram will it take to cover the bulletin board if each photo has a base of 6 inches an
    13·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!