1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
IRISSAK [1]
3 years ago
11

5. A cube has edges 4 inches long. Susan plans to completely cover each face of the cube with square pictures that are 2 inches

long on each side. How many pictures will Susan use if
she does not overlap any of them?
12
24
20
16
Mathematics
1 answer:
Gnesinka [82]3 years ago
8 0

Answer:

24

Step-by-step explanation:

You might be interested in
5 4/5 is greater than less than or equal to 58/10?
EastWind [94]
Deez butts, hottttie
3 0
3 years ago
Read 2 more answers
A certain tennis player makes a successful first serve 6969​% of the time. Suppose the tennis player serves 9090 times in a matc
Wewaii [24]

Answer:

a) 4.387

b) Yes, because np & npq are greater than 10.

c) = 0.017          

Step-by-step explanation:

Give data:

p = 0.69

n = 90

a) a

E(X) = np = 62.1

SD(X) = \sqrt{(np(1-p))}

          =\sqrt{90\times 0.69(1- 0.69)}

          = 4.387

b)

np = 62.1  

q = 1 - p  = 1 - 0.69 = 0.31

npq = 19.251

Yes, because np & npq are greater than 10.

c.

P(X \geq 72   ) = P(X > 71.5) [continuity correction]

=    P(Z> \frac{((71.5-62.1)}{ 4.387})

= P(Z> 2.14 )      

= 1 - P(Z<2.14)              

= 1 - 0.983   (using table)          

= 0.017          

8 0
4 years ago
Lim n→∞[(n + n² + n³ + .... nⁿ)/(1ⁿ + 2ⁿ + 3ⁿ +....nⁿ)]​
Schach [20]

Step-by-step explanation:

\large\underline{\sf{Solution-}}

Given expression is

\rm :\longmapsto\:\displaystyle\lim_{n \to \infty}  \frac{n +  {n}^{2}  +  {n}^{3}  +  -  -  +  {n}^{n} }{ {1}^{n} +  {2}^{n} +  {3}^{n}  +  -  -  +  {n}^{n} }

To, evaluate this limit, let we simplify numerator and denominator individually.

So, Consider Numerator

\rm :\longmapsto\:n +  {n}^{2} +  {n}^{3}  +  -  -  -  +  {n}^{n}

Clearly, if forms a Geometric progression with first term n and common ratio n respectively.

So, using Sum of n terms of GP, we get

\rm \:  =  \: \dfrac{n( {n}^{n}  - 1)}{n - 1}

\rm \:  =  \: \dfrac{ {n}^{n}  - 1}{1 -  \dfrac{1}{n} }

Now, Consider Denominator, we have

\rm :\longmapsto\: {1}^{n} +  {2}^{n} +  {3}^{n}  +  -  -  -  +  {n}^{n}

can be rewritten as

\rm :\longmapsto\: {1}^{n} +  {2}^{n} +  {3}^{n}  +  -  -  -  +  {(n - 1)}^{n} +   {n}^{n}

\rm \:  =  \:  {n}^{n}\bigg[1 +\bigg[{\dfrac{n - 1}{n}\bigg]}^{n} + \bigg[{\dfrac{n - 2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]

\rm \:  =  \:  {n}^{n}\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]

Now, Consider

\rm :\longmapsto\:\displaystyle\lim_{n \to \infty}  \frac{n +  {n}^{2}  +  {n}^{3}  +  -  -  +  {n}^{n} }{ {1}^{n} +  {2}^{n} +  {3}^{n}  +  -  -  +  {n}^{n} }

So, on substituting the values evaluated above, we get

\rm \:  =  \: \displaystyle\lim_{n \to \infty}  \frac{\dfrac{ {n}^{n}  - 1}{1 -  \dfrac{1}{n} }}{{n}^{n}\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]}

\rm \:  =  \: \displaystyle\lim_{n \to \infty}  \frac{ {n}^{n}  - 1}{{n}^{n}\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]}

\rm \:  =  \: \displaystyle\lim_{n \to \infty}  \frac{ {n}^{n}\bigg[1 - \dfrac{1}{ {n}^{n} } \bigg]}{{n}^{n}\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]}

\rm \:  =  \: \displaystyle\lim_{n \to \infty}  \frac{\bigg[1 - \dfrac{1}{ {n}^{n} } \bigg]}{\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]}

\rm \:  =  \: \displaystyle\lim_{n \to \infty}  \frac{1}{\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]}

Now, we know that,

\red{\rm :\longmapsto\:\boxed{\tt{ \displaystyle\lim_{x \to \infty} \bigg[1 + \dfrac{k}{x} \bigg]^{x}  =  {e}^{k}}}}

So, using this, we get

\rm \:  =  \: \dfrac{1}{1 +  {e}^{ - 1}  + {e}^{ - 2} +  -  -  -  -  \infty }

Now, in denominator, its an infinite GP series with common ratio 1/e ( < 1 ) and first term 1, so using sum to infinite GP series, we have

\rm \:  =  \: \dfrac{1}{\dfrac{1}{1 - \dfrac{1}{e} } }

\rm \:  =  \: \dfrac{1}{\dfrac{1}{ \dfrac{e - 1}{e} } }

\rm \:  =  \: \dfrac{1}{\dfrac{e}{e - 1} }

\rm \:  =  \: \dfrac{e - 1}{e}

\rm \:  =  \: 1 - \dfrac{1}{e}

Hence,

\boxed{\tt{ \displaystyle\lim_{n \to \infty}  \frac{n +  {n}^{2}  +  {n}^{3}  +  -  -  +  {n}^{n} }{ {1}^{n} +  {2}^{n} +  {3}^{n}  +  -  -  +  {n}^{n} } =  \frac{e - 1}{e} = 1 -  \frac{1}{e}}}

3 0
3 years ago
How would you do these problems i don't understand how to do them? (Attached!)
d1i1m1o1n [39]
#9 . D    Feline = $1.30/lbs          Kitty Kibbles = $1.40/lbs
#10.B    5:6 = 30:36
3 0
3 years ago
Alicia uses 3/4 gallon of paint to paint her room. Becca uses for 4/5 gallon more than Alicia to paint her room. How many gallon
Maurinko [17]

Answer:

23/10 gallons

Step-by-step explanation:

Alicia uses 3/4 gallon of paint to paint her room.

Alicia use = 3/4 gallon of paint

Becca uses for 4/5 gallon more than Alicia to paint her room.

Becca uses = Alicia (3/4 gallons ) + 4/5

Becca uses = \frac{3}{4} + \frac{4}{5}

Total paint used together = Aliccia used + Becca used

\frac{3}{4}+\frac{3}{4} + \frac{4}{5}

Add like fractions 3/4 + 3/4 becomes 6/4

\frac{6}{4} + \frac{4}{5}

Make the denominators same

\frac{6*5}{4*5} + \frac{4*4}{5*4}

\frac{30}{20} + \frac{16}{20}

\frac{46}{20}

Divide top and bottom by 2

\frac{23}{10} gallons



6 0
3 years ago
Other questions:
  • What is the value of n?<br><br>5n + 8=30<br><br><br>A 3 1/5<br><br>B 4 2/5<br><br>C 6<br><br>D 7 3/5
    14·1 answer
  • What is 0 less than equal to t/3&lt; 2 with compound inequalities
    15·1 answer
  • Write the missing base. 9/16=()^2
    7·1 answer
  • Andrew is practicing for a tennis tournamnet and needs more tennis balls.He bought 10 cans of tennis balls online and received a
    13·1 answer
  • Fit for Family offers a membership fee of $450 for the year or the option to pay $41 per month. How much more do you save each m
    11·1 answer
  • Mclane is playing a game where you get 5 points for correct answers and lose 3 points for incorrect answers. If he gets 6 questi
    6·1 answer
  • Help me solve the first one and the second one please
    15·2 answers
  • Melissa ran at a constant speed of 509.056 meters in 62.08 seconds. How far did Melissa run in one second?
    6·1 answer
  • !!!!!!! PLEASE PLEASE, HELP ME. i SERIOUSLY CANT FAIL THIS. I NEED HELP SO BAD. IM REALLY STUCK PLEASE.!!!
    11·1 answer
  • Question<br> Simplify the expression.<br><br> 2^4⋅2^5−(2^2)^2
    5·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!