By algebra properties we find the following relationships between each pair of algebraic expressions:
- First equation: Case 4
- Second equation: Case 1
- Third equation: Case 2
- Fourth equation: Case 5
- Fifth equation: Case 3
<h3>How to determine pairs of equivalent equations</h3>
In this we must determine the equivalent algebraic expression related to given expressions, this can be done by applying algebra properties on equations from the second column until equivalent expression is found. Now we proceed to find for each case:
First equation
(7 - 2 · x) + (3 · x - 11)
(7 - 11) + (- 2 · x + 3 · x)
- 4 + (- 2 + 3) · x
- 4 + (1) · x
- 4 + (5 - 4) · x
- 4 - 4 · x + 5 · x
- 4 · (x + 1) + 5 · x → Case 4
Second equation
- 7 + 6 · x - 4 · x + 3
(6 · x - 4 · x) + (- 7 + 3)
(6 - 4) · x - 4
2 · x - 4
2 · (x - 2) → Case 1
Third equation
9 · x - 2 · (3 · x - 3)
9 · x - 6 · x + 6
3 · x + 6
(2 + 1) · x + (14 - 8)
[1 - (- 2)] · x + (14 - 8)
(x + 14) - (8 - 2 · x) → Case 2
Fourth equation
- 3 · x + 6 + 4 · x
x + 6
(5 - 4) · x + (7 - 1)
(7 + 5 · x) + (- 4 · x - 1) → Case 5
Fifth equation
- 2 · x + 9 + 5 · x + 6
3 · x + 15
3 · (x + 5) → Case 3
To learn more on algebraic equations: brainly.com/question/24875240
#SPJ1
Answer:
hi
Step-by-step explanation:
Answer:
option C. 
Step-by-step explanation:
we have that
The point (-5,-12) belong to the III quadrant
so
The value of the cosine is negative
Applying the Pythagoras Theorem
Find the value of the hypotenuse

The value of cosine of angle θ is the ratio between the side adjacent to angle θ and the hypotenuse

D is not because you can not graph it.
The slope-intercept form is
y=mx+b
, where m is the slope and b is the y-intercept.
y=mx+b
Find the values of
m
and
b
using the form
y
=
m
x
+
b
.
\m
=
2
b
=
−
3
The slope of the line is the value of
m
, and the y-intercept is the value of
b
.
Slope:
2
y-intercept:
(
0
,
−
3
)
Any line can be graphed using two points. Select two
x
values, and plug them into the equation to find the corresponding
y
values.
Tap for fewer steps...
Find the x-intercept.
Tap for more steps...
x-intercept(s):
(
3
2
,
0
)
Find the y-intercept.
Tap for more steps...
y-intercept(s):
(
0
,
−
3
)
Create a table of the
x
and
y
values.
x
y
0
−
3
3
2
0
m
=
2
b
=
−
3
The slope of the line is the value of
m
, and the y-intercept is the value of
b
.
Slope:
2
y-intercept:
(
0
,
−
3
)
Any line can be graphed using two points. Select two
x
values, and plug them into the equation to find the corresponding
y
values.
Tap for fewer steps...
Find the x-intercept.
Tap for more steps...
x-intercept(s):
(
3
2
,
0
)
Find the y-intercept.
Tap for more steps...
y-intercept(s):
(
0
,
−
3
)
Create a table of the
x
and
y
values.
x
y
0
−
3
3
2
0
I'm so sorry it layed out like this my computer is being st00pid