Answer:
(1) Bromination, (2) E2 elimination and (3) epoxidation
Explanation:
- In the first step, -OH group in cyclopentanol is replaced by more facile leaving group Br by treating cyclopentanol with

- In the second step, E2 elimination in presence of strong base e.g. NaOEt/EtOH produce cyclopentene
- In the third step, treatment of cyclopentene with mCPBA produces 1,2-epoxycyclopentane
- Full reaction scheme has been shown below
Electrolysis of water<span> is the </span><span>decomposition reaction, because from one molecule (water) two molecules (hydrogen and oxygen) are produced. Water is separeted into two molecules:
</span>Reaction of reduction at cathode: 2H⁺(aq) + 2e⁻<span> → H</span>₂(g<span>).
</span><span><span>Reaction of oxidation at anode: 2H</span></span>₂<span><span>O(l) → O</span></span>₂<span><span>(g) + 4H</span></span>⁺(<span><span>aq) + 4e</span></span>⁻.<span><span>
</span></span>
Nitrogen is crucial to the marine life and it is disappearing because it cannot be assimilated by most organisms in the water.
The water in Glass A is cooler than the water in Glass B; therefore, the particles in Glass A move slower.
Option D
<h3>Chemical Reactions</h3>
Generally,the experiment shows that glass B temperature is higher than glass temperature A and this is given that observation that the solute dissolves faster in glass B than glass A.
Therefore,The water in Glass A is cooler than the water in Glass B; therefore, the particles in Glass A move slower.
For more information on Temperature
brainly.com/question/13439286