Answer:
Kinetic energy is the energy of motion so to figure out that it’s not changing is if the object is still moving. If it’s staying still or is at rest, it is presenting potential energy, which is when energy is being stored inside the object.
<span>Raising
the temperature of the reactants increases the reaction between the reactants.
The kinetic energy of the molecules of the reactants collides more frequently
with ach other thereby increasing its reaction. Increasing the concentration of
the reactants increases the reaction rate. Adding a catalyst to the reaction
increases the rate of reaction of a substance. The catalyst hastens the
chemical reaction. </span>
Answer:
C4H9OH + 6O2 → 4CO2 + 5H2O
Explanation:
Answer:
The answer to your question is P2 = 2676.6 kPa
Explanation:
Data
Volume 1 = V1 = 12.8 L Volume 2 = V2 = 855 ml
Temperature 1 = T1 = -108°C Temperature 2 = 22°C
Pressure 1 = P1 = 100 kPa Pressure 2 = P2 = ?
Process
- To solve this problem use the Combined gas law.
P1V1/T1 = P2V2/T2
-Solve for P2
P2 = P1V1T2 / T1V2
- Convert temperature to °K
T1 = -108 + 273 = 165°K
T2 = 22 + 273 = 295°K
- Convert volume 2 to liters
1000 ml -------------------- 1 l
855 ml -------------------- x
x = (855 x 1) / 1000
x = 0.855 l
-Substitution
P2 = (12.8 x 100 x 295) / (165 x 0.855)
-Simplification
P2 = 377600 / 141.075
-Result
P2 = 2676.6 kPa
Polar covalent bond- a bond where atoms are unevenly shared due to a larger difference in electronegativity of the bonded elements.
Non-polar covalent bond- These are bonds between elements with a low difference in electronegativity. Electrons are shared equally in these bonds between the elements.
Ionic bonds- have such large difference in electronegativity that they take/give electrons to the element they are bonded to. They do not share electrons at all. Bonds between a non-metal and a metal.