Where loads are likely to be on continuously, the calculated load for branch circuits and feeders must be figured at 125%.
Section 210.19(A)(1) permits the bigger of the two values listed below to be utilized as the connectors 's ultimate size for sizing an ungrounded branch circuit conductor:
Without any extra adjustments or corrections, either 125% of the continuous load, OR
When adjustment and corrective factors are applied, the load is 100% (not 125% as stated previously).
This will be the same in the 2020 NEC. The introduction of new exception 2 is what has changed. To comprehend this new exception, one must study it very carefully. A part of a branch circuit connected to pressure connectors (such as power distribution blocks) that complies with 110.14(C)(2) may now be sized using the continuous load plus the noncontiguous load instead of 125% of the continuous load thanks to the new exception.
To know more about connectors click here:
brainly.com/question/16987039
#SPJ4
Answer:
a)Are generally associated with factor.
Explanation:
We know that losses are two types
1.Major loss :Due to friction of pipe surface
2.Minor loss :Due to change in the direction of flow
As we know that when any hindrance is produced during the flow of fluid then it leads to generate the energy losses.If flow is along uniform diameter pipe then there will not be any loss but if any valve and fitting placed is the path of fluid flow due to this direction of fluid flow changes and it produce losses in the energy.
Lot' of experimental data tell us that loss in the energy due to valve and fitting are generally associated with K factor.These losses are given as

Answer:
Explanation:
The detailed and careful step by step calculation and analysis is as shown with appropriate formula in the attached files
Answer:
The resistance is 24.9 Ω
Explanation:
The resistivity is equal to:

The area is:
A = 60 * 60 = 3600 um² = 0.36x10⁻⁴cm²

If NA is greater, then, the term 1/NA can be neglected, thus the equation:

Where
V = 0.44 V
E = 11.68*8.85x10¹⁴ f/cm


The length is:
L = 10 - 0.335 = 9.665 um
The resistance is:

Answer:
see vous se to pe a he ko off a nack u