Answer:
I can't tell you that ANSWER because I need to see the answers they gave you to circle or something
Answer:
Maximum shear stress is;
τ_max = 1427.12 psi
Explanation:
We are given;
Power = 2 HP = 2 × 746 Watts = 1492 W
Angular speed;ω = 450 rev/min = 450 × 2π/60 rad/s = 47.124 rad/s
Diameter;d = 1 in
We know that; power = shear stress × angular speed
So,
P = τω
τ = P/ω
τ = 1492/47.124
τ = 31.66 N.m
Converting this to lb.in, we have;
τ = 280.2146 lb.in
Maximum shear stress is given by the formula;
τ_max = (τ•d/2)/J
J is polar moment of inertia given by the formula; J = πd⁴/32
So,
τ_max = (τ•d/2)/(πd⁴/32)
This reduces to;
τ_max = (16τ)/(πd³)
Plugging in values;
τ_max = (16 × 280.2146)/((π×1³)
τ_max = 1427.12 psi
Answer:
COP = 0.090
Explanation:
The general formula for COP is:
COP = Desired Output/Required Input
Here,
Desired Output = Heat removed from water while cooling
Desired Output = (Specific Heat of Water)(Mass of Water)(Change in Temperature)/Time
Desired Output = [(4180 J/kg.k)(3.1 kg)(25 - 11)k]/[(12 hr)(3600 sec/hr)]
Desired Output = 4.199 W
And the required input can be given as electrical power:
Required Input = Electrical Power = (Current)(Voltage)
Required Input = (2.9 A)(16 V) = 46.4 W
Therefore:
COP = 4.199 W/46.4 W
<u>COP = 0.090</u>
Answer:
Space velocity = 30 hr⁻¹
Explanation:
Space velocity for reactors express how much reactor volume of feed or reactants can be treated per unit time. For example, a space velocity of 3 hr⁻¹ means the reactor can process 3 times its volume per hour.
It is given mathematically as
Space velocity = (volumetric flow rate of the reactants)/(the reactor volume)
Volumetric flowrate of the reeactants
= (molar flow rate)/(concentration)
Molar flowrate of the reactants = 300 millimol/hr
Concentration of the reactants = 100 millimol/liter
Volumetric flowrate of the reactants = (300/100) = 3 liters/hr
Reactor volume = 0.1 liter
Space velocity = (3/0.1) = 30 /hr = 30 hr⁻¹
Hope this Helps!!!
Answer: Pull.
Because it's all about height width and Breadth!