Answer:
Hand tools based on job requirement and its importance and the classification of hand tools according to its function and its importance are discussed below in details.
Explanation:
Hand tools based on work requirement is essential because Every tool is specifically invented for a particular purpose, so picking the accurate tool will also reduce the amount of energy needed to get work done right without causing injury or harm to either the tools or the exterior being worked on.
classifying of hand tools: wrenches, screwdrivers, cutters, striking tools, hammer tool or struck, pliers, vise, clamps, snips, saws, drills, and knives.
Efficiency is the minimum use of energy to accomplish the task. The wasted energy will be 375 J when 750 J of energy is given.
<h3>What is wasted energy?</h3>
Wasted energy is energy that is not useful when the transformation in the system occurs.
Total energy = 750 J
The efficiency of the system = 50 %
Output work (OW) is calculated as:
Efficiency = output work ÷ input work × 100%
750 × 50 = 100 OW
OW = 375 J
Wasted energy = Total energy - output work
= 750 - 375
= 375 J
Therefore, the machine is 50 % inefficient and has wasted energy of 375 J.
Learn more about wasted energy here:
brainly.com/question/16177264
#SPJ4
Answer:
0.08kg/s
Explanation:
For this problem you must use 2 equations, the first is the continuity equation that indicates that all the mass flows that enter is equal to those that leave the system, there you have the first equation.
The second equation is obtained using the first law of thermodynamics that indicates that all the energies that enter a system are the same that come out, you must take into account the heat flows, work and mass flows of each state, as well as their enthalpies found with the temperature.
finally you use the two previous equations to make a system and find the mass flows
I attached procedure
Answer:
<u>Assistants</u><u> </u><u>works alongside and assists the engineers.</u>
Answer:

Explanation:
Let assume that heating and boiling process occurs under an athmospheric pressure of 101.325 kPa. The heat needed to boil water is:
![Q_{water} = (1.4\,L)\cdot(\frac{1\,m^{3}}{1000\,L} )\cdot (1000\,\frac{kg}{m^{3}} )\cdot [(4.187\,\frac{kJ}{kg\cdot ^{\textdegree}C} )\cdot (100^{\textdegree}C-25^{\textdegree}C)+2257\,\frac{kJ}{kg}]](https://tex.z-dn.net/?f=Q_%7Bwater%7D%20%3D%20%281.4%5C%2CL%29%5Ccdot%28%5Cfrac%7B1%5C%2Cm%5E%7B3%7D%7D%7B1000%5C%2CL%7D%20%29%5Ccdot%20%281000%5C%2C%5Cfrac%7Bkg%7D%7Bm%5E%7B3%7D%7D%20%29%5Ccdot%20%5B%284.187%5C%2C%5Cfrac%7BkJ%7D%7Bkg%5Ccdot%20%5E%7B%5Ctextdegree%7DC%7D%20%29%5Ccdot%20%28100%5E%7B%5Ctextdegree%7DC-25%5E%7B%5Ctextdegree%7DC%29%2B2257%5C%2C%5Cfrac%7BkJ%7D%7Bkg%7D%5D)

The heat liberated by the LP gas is:


A kilogram of LP gas has a minimum combustion power of
. Then, the required mass is:

