Answer:
Explanation:
The image attached to the question is shown in the first diagram below.
From the diagram given ; we can deduce a free body diagram which will aid us in solving the question.
IF we take a look at the second diagram attached below ; we will have a clear understanding of what the free body diagram of the system looks like :
From the diagram; we can determine the length of BC by using pyhtagoras theorem;
SO;






The cross -sectional of the cable is calculated by the formula :

where d = 4mm

A = 1.26 × 10⁻⁵ m²
However, looking at the maximum deflection in length
; we can calculate for the force
by using the formula:


where ;
E = modulus elasticity
= length of the cable
Replacing 1.26 × 10⁻⁵ m² for A; 200 × 10⁹ Pa for E ; 7.2111 m for
and 0.006 m for
; we have:

---- (1)
Similarly; we can determine the force
using the allowable maximum stress; we have the following relation,


where;
maximum allowable stress
Replacing 190 × 10⁶ Pa for
; we have :
------ (2)
Comparing (1) and (2)
The magnitude of the force
since the elongation of the cable should not exceed 6mm
Finally applying the moment equilibrium condition about point A






P = 1.9937 kN
Hence; the maximum load P that can be applied is 1.9937 kN
Answer:
Yes, it is possible to maintain a pressure of 10 kPa in a condenser that is being cooled by river water that is entering at 20 °C because this temperature (20 °C) of the external cooling water is less than the saturation temperature of steam which is which is 45.81 °C, and heated by a boiler; as a result of this condition, coupled with the assumption that the turbine, pump, and interconnecting tube are adiabatic, and the condenser exchanges its heat with the external cooling river water, it possible to maintain a pressure of 10 kPa.
Castor oil is increasingly becoming an important bio-based raw material for industrial applications. The oil is non-edible and can be extracted from castor seeds from the castor plant belonging to the family Euphorbiaceae. The oil is a mixture of saturated and unsaturated fatty acid esters linked to a glycerol. The presence of hydroxyl group, a double bond, carboxylic group and a long chain hydrocarbon in ricinoleic acid (a major component of the oil), offer several possibilities of transforming it into variety of materials. The oil is thus a potential alternative to petroleum-based starting chemicals for the production of materials with variety of properties. Despite this huge potential, very little has recently been reviewed on the use of castor oil as a bio-resource in the production of functional materials. This review therefore highlights the potential of castor oil in the production of these diverse materials with their projected global market potential. The review gives the background information of castor oil and its geographical availability, the properties and its uses as bio-based resource for synthesis of various materials. The review further highlights on the use of castor oil or ricinoleic acid as a green capping agent in the synthesis of nanomaterials.

Answer:
Explanation:
Before: PT= 0.10, PB= 0.03 (given) ET = 2.5 ER = 2.0 (Table 6.5)
fHV= 0.847 (Eq. 6.5) PHF = 0.95, fp= 0.90, N=2, V = 2200 (given)
vp= V/[PHF⋅fHVTB⋅fp⋅N] = 1518.9 (Eq. 6.3)
BFFS = 50+5, BFFS =55 (given) fLW= 6.6
TLC=6+3=9 fLC= 0.65
fM= 0.0
fA= 1.0
FFS = BFFS −fLW−fLC–fM–fA= 46.75 (Eq. 6.7)
Use FFS=45 D= vp/S = 33.75pc/mi/ln Eq (6.6)
After: fA= 3.0
FFS = BFFS −fLW−fLC–fM–fA= 44.75 (Eq. 6.7)
Use FFS=45 Vnew= 2600 Vp= Va/[PHF⋅fHB⋅fp⋅N] = 1795 (Eq. 6.3) D= vp/S = 39.89pc/mi/ln