1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
irakobra [83]
3 years ago
11

A rigid vessel with a volume of 10 m3 contains a water-vapor mixture at 400 kPa. If the quality is 60 percent, find the mass. Th

e pressure is lowered to 300 kPa by cooling the vessel; find mg and mf.
Engineering
1 answer:
trapecia [35]3 years ago
7 0
A) The pressure (p)=400kPa=0.400MPa
Mass of mixture =M
quality (X)= 0.60
Volume of mixture (V)=10 m3
From steam table at P=0.400MPa
Specific volume of saturated water (vf)=0.00108355 m3/kg
Specific volume of saturated steam (vg)=0.46238 m3/kg
Therefore, the volume of steam having X=0.6 is given by
V=M[vf+X(vg-vf)]
10= M[0.00108355+0.6(0.46238-0.00108355)]
M=36.04748 kg
If pressure is lowered to 300kPa
p=0.300MPa
From steam table we get,
Specific volume of saturated water (vf)=0.00107317 m3/kg
Specific volume of saturated steam (vg)=0.60576 m3/kg
Therefore, the volume of steam having X=0.6 is given by
V=M[vf+X(vg-vf)]
10= M[0.001007317+0.6(0.60576-0.00107317)]
M= 26.4825 kg
You might be interested in
A petrol engine produces 20 hp using 35 kW of heat transfer from burning fuel. What is its thermal efficiency, and how much powe
hoa [83]

Answer:

efficiency =42.62%

AMOUNT OF POWER REJECTED IS 20.080 kW

Explanation:

given data:

power 20 hp

heat energy = 35kW

power production = 20 hp = 20* 746 W = 14920 Watt   [1 hp =746 watt]

efficiency = \frac{power}{heat\ required}

efficiency = \frac{14920}{35*10^3}

                = 0.4262*10^100

                 =42.62%

b) heat\ rejected = heat\ required - amount\ of\ power\ generated

                           = 35*10^3 - 14920

                           = 20.080 kW

AMOUNT OF POWER REJECTED IS 20.080 kW

5 0
3 years ago
In Josiah Johnson Hawes and Albert Sands Southworth, Early Operation under Ether, Massachusetts General Hospital the elevated vi
Ronch [10]
C and A I think cause I don’t really remember this I done before it his to be C and A
4 0
3 years ago
Small droplets of carbon tetrachloride at 68 °F are formed with a spray nozzle. If the average diameter of the droplets is 200 u
Licemer1 [7]

Answer:

the difference in pressure between the inside and outside of the droplets is 538 Pa

Explanation:

given data

temperature = 68 °F

average diameter = 200 µm

to find out

what is the difference in pressure between the inside and outside of the droplets

solution

we know here surface tension of carbon tetra chloride at 68 °F is get from table 1.6 physical properties of liquid that is

σ = 2.69 × 10^{-2} N/m

so average radius = \frac{diameter}{2} =  100 µm = 100 ×10^{-6} m

now here we know relation between pressure difference and surface tension

so we can derive difference pressure as

2π×σ×r = Δp×π×r²    .....................1

here r is radius and  Δp pressure difference and σ surface tension

Δp = \frac{2 \sigma }{r}    

put here value

Δp = \frac{2*2.69*10^{-2}}{100*10^{-6}}  

Δp = 538

so the difference in pressure between the inside and outside of the droplets is 538 Pa

7 0
3 years ago
The pads are 200mm long, 150 mm wide and thickness equal to 12mm. 1- Determine the average shear strain in the rubber if the for
lord [1]

Answer:

a) 0.3

b) 3.6 mm

Explanation:

Given

Length of the pads, l = 200 mm = 0.2 m

Width of the pads, b = 150 mm = 0.15 m

Thickness of the pads, t = 12 mm = 0.012 m

Force on the rubber, P = 15 kN

Shear modulus on the rubber, G = 830 GPa

The average shear strain can be gotten by

τ(average) = (P/2) / bl

τ(average) = (15/2) / (0.15 * 0.2)

τ(average) = 7.5 / 0.03

τ(average) = 250 kPa

γ(average) = τ(average) / G

γ(average) = 250 kPa / 830 kPa

γ(average) = 0.3

horizontal displacement,

δ = γ(average) * t

δ = 0.3 * 12

δ = 3.6 mm

5 0
3 years ago
Water vapor at 10bar, 360°C enters a turbine operatingat steady state with a volumetric flow rate of 0.8m3/s and expandsadiabati
Artyom0805 [142]

Answer:

A) W' = 178.568 KW

B) ΔS = 2.6367 KW/k

C) η = 0.3

Explanation:

We are given;

Temperature at state 1;T1 = 360 °C

Temperature at state 2;T2 = 160 °C

Pressure at state 1;P1 = 10 bar

Pressure at State 2;P2 = 1 bar

Volumetric flow rate;V' = 0.8 m³/s

A) From table A-6 attached and by interpolation at temperature of 360°C and Pressure of 10 bar, we have;

Specific volume;v1 = 0.287322 m³/kg

Mass flow rate of water vapour at turbine is defined by the formula;

m' = V'/v1

So; m' = 0.8/0.287322

m' = 2.784 kg/s

Now, From table A-6 attached and by interpolation at state 1 with temperature of 360°C and Pressure of 10 bar, we have;

Specific enthalpy;h1 = 3179.46 KJ/kg

Now, From table A-6 attached and by interpolation at state 2 with temperature of 160°C and Pressure of 1 bar, we have;

Specific enthalpy;h2 = 3115.32 KJ/kg

Now, since stray heat transfer is neglected at turbine, we have;

-W' = m'[(h2 - h1) + ((V2)² - (V1)²)/2 + g(z2 - z1)]

Potential and kinetic energy can be neglected and so we have;

-W' = m'(h2 - h1)

Plugging in relevant values, the work of the turbine is;

W' = -2.784(3115.32 - 3179.46)

W' = 178.568 KW

B) Still From table A-6 attached and by interpolation at state 1 with temperature of 360°C and Pressure of 10 bar, we have;

Specific entropy: s1 = 7.3357 KJ/Kg.k

Still from table A-6 attached and by interpolation at state 2 with temperature of 160°C and Pressure of 1 bar, we have;

Specific entropy; s2 = 8.2828 KJ/kg.k

The amount of entropy produced is defined by;

ΔS = m'(s2 - s1)

ΔS = 2.784(8.2828 - 7.3357)

ΔS = 2.6367 KW/k

C) Still from table A-6 attached and by interpolation at state 2 with s2 = s2s = 8.2828 KJ/kg.k and Pressure of 1 bar, we have;

h2s = 2966.14 KJ/Kg

Energy equation for turbine at ideal process is defined as;

Q' - W' = m'[(h2 - h1) + ((V2)² - (V1)²)/2 + g(z2 - z1)]

Again, Potential and kinetic energy can be neglected and so we have;

-W' = m'(h2s - h1)

W' = -2.784(2966.14 - 3179.46)

W' = 593.88 KW

the isentropic turbine efficiency is defined as;

η = W_actual/W_ideal

η = 178.568/593.88 = 0.3

8 0
3 years ago
Other questions:
  • A high-voltage direct-current (dc) transmission line between Celilo, Oregon and Sylmar, California is 845 mi in length. The line
    15·1 answer
  • Stainless steel ball bearings (rho = 8085 kg/m3 and cp = 0.480 kJ/kg·°C) having a diameter of 1.2 cm are to be quenched in water
    10·2 answers
  • The following liquids are stored in a storage vessel at 1 atm and 25°C. The vessels are vented with air. Determine whether the e
    5·1 answer
  • What did the romans adopt from the Greek representation of the human art form
    15·1 answer
  • Matthew wants to manufacture a large quantity of products with standardized products having less variety. Which type of producti
    5·1 answer
  • For what two reasons do countries specialize? Countries specialize so that opportunity costs can be increased. Countries special
    13·1 answer
  • Before accurate distance standards, a cubit was the length of whose forearm?
    5·1 answer
  • I wuv little space :)
    8·1 answer
  • What is the purpose of encryption?
    13·1 answer
  • Which of the following might a cement mason or concrete finisher be responsible for? (Select all that apply).
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!