Answer:
Also 3s.
Explanation:
Each component is independent in two dimensional motion. This means that <em>how much time does something take to reach the ground when dropped is independent from any horizontal velocity</em>. If at one run a drop lasts 3s, at another run with twice the (horizontal) velocity and same height will also last 3s, no matter what.
Answer:
0.191 s
Explanation:
The distance from the center of the cube to the upper corner is r = d/√2.
When the cube is rotated an angle θ, the spring is stretched a distance of r sin θ. The new vertical distance from the center to the corner is r cos θ.
Sum of the torques:
∑τ = Iα
Fr cos θ = Iα
(k r sin θ) r cos θ = Iα
kr² sin θ cos θ = Iα
k (d²/2) sin θ cos θ = Iα
For a cube rotating about its center, I = ⅙ md².
k (d²/2) sin θ cos θ = ⅙ md² α
3k sin θ cos θ = mα
3/2 k sin(2θ) = mα
For small values of θ, sin θ ≈ θ.
3/2 k (2θ) = mα
α = (3k/m) θ
d²θ/dt² = (3k/m) θ
For this differential equation, the coefficient is the square of the angular frequency, ω².
ω² = 3k/m
ω = √(3k/m)
The period is:
T = 2π / ω
T = 2π √(m/(3k))
Given m = 2.50 kg and k = 900 N/m:
T = 2π √(2.50 kg / (3 × 900 N/m))
T = 0.191 s
The period is 0.191 seconds.
Answer
Integral EdA = Q/εo =C*Vc(t)/εo = 3.5e-12*21/εo = 4.74 V∙m <----- A)
Vc(t) = 21(1-e^-t/RC) because an uncharged capacitor is modeled as a short.
ic(t) = (21/120)e^-t/RC -----> ic(0) = 21/120 = 0.175A <----- B)
Q(0.5ns) = CVc(0.5ns) = 2e-12*21*(1-e^-t/RC) = 30.7pC
30.7pC/εo = 3.47 V∙m <----- C)
ic(0.5ns) = 29.7ma <----- D)