The law of conservation of mass says you don't create or destroy atoms in a reaction. So the total mass of reagents equals the total mass of the products.
Answer:
find the diagram in the attachment.
Explanation:
Let vi = 12 m/s be the intial velocy when the ball is thrown, Δy be the displacement of the ball to a point where it starts returning down, g = 9.8 m/s^2 be the balls acceleration due to gravity.
considering the motion when the ball thrown straight up, we know that the ball will come to a stop and return downwards, so:
(vf)^2 = (vi)^2 + 2×g×Δy
vf = 0 m/s, at the highest point in the upward motion, then:
0 = (vi)^2 + 2×g×Δy
-(vi)^2 = 2×g×Δy
Δy = [-(vi)^2]/2×g
Δy = [-(-12)^2]/(2×9.8)
Δy = - 7.35 m
then from the highest point in the straight up motion, the ball will go back down and attain the speed of 12 m/s at the same level as it was first thrown
Answer: e. Christian Dopplerâ
Explanation:
Based on the information given, the scientist of the past that should definitely be included in the exhibit is Christian Dopplera.
He described how the frequency of sound waves and light is being affected by the relative speed of both the source and also the observer. This was referred to as the Doppler effect.
In this scenario, the Doppler effect can be used to show how the universe is expanding. Therefore, the correct option is E.
To solve this problem it is necessary to apply the equations related to the conservation of momentum. Mathematically this can be expressed as

Where,
= Mass of each object
= Initial velocity of each object
= Final Velocity
Since the receiver's body is static for the initial velocity we have that the equation would become



Therefore the velocity right after catching the ball is 0.0975m/s
Answer:
2.24 seconds
Explanation:
xf = xo + vo t + 1/2 at^2
45 = 0 + 15 t + 1/2 (4.5) t^2
2.25 t^2 + 15t - 45 = 0 Quadratic formula shows t = 2.24 seconds